首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyanogen bromide peptide alpha 1-(III)CB1,8,10,2 is 180 amino acid residues in length and occupies position 223 to 402 along the alpha 1(III) chain. In order to elucidate its amino acid sequence, alpha 1(III)CB1,8,10,2 was fragmented with hydroxylamine, protease from Staphylococcus aureus V8 and trypsin. Peptides necessary for sequence analysis with the automated Edman degradation were separated using molecular and ion exchange chromatography. Edman degradation of the hydroxylamine-derived fragments resulted in the elucidation of 80% of the entire sequence. The rest was completely established by sequence analysis of some protease V8 and trypsin-derived peptides.  相似文献   

2.
The peptide corresponding to the (66-104) sequence of horse heart cytochrome c and its carboxyamide analog, selectively modified at the critical Met80 residue, have been synthesized by stepwise solid-phase methods on PAM and BHA resins respectively. The correctness of the growing peptide chain as well as the homogeneity of the final products have been monitored by several analytical methods including quantitative Edman degradation. After HF cleavage both peptides were purified by semipreparative HPLC. The overall yields were 24% for the native (66-104) and 10% for the carboxyamide analog. The homogeneity of the purified synthetic peptides have been determined by different criteria including HPLC, amino acid composition, Edman degradation, electrophoresis, and tryptic peptide mapping. The synthetic fragments have been utilized for preliminary semisynthesis experiments with the native [Hse greater than 65] (1-65)H heme-sequence.  相似文献   

3.
The primary structure of rat liver ribosomal protein L39   总被引:4,自引:0,他引:4  
The covalent structure of the rat liver 60 S ribosomal subunit protein L39 was determined. Fourteen tryptic peptides were purified, and the sequence of each was established by a micromanual procedure; they accounted for all 50 residues of L39. The sequence of the NH2-terminal 32 residues of L39, obtained by automated Edman degradation of the intact protein, provided the alignment of the first seven tryptic peptides. Two peptides, CNI (28 residues) and CNII (22 residues), were produced by cleavage of protein L39 with cyanogen bromide and the sequence of CNII was determined by automated Edman degradation. This sequence established the order of tryptic peptides T8 through T14. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. Protein L39 contains 50 amino acids and has a molecular weight of 7308. There are indications that a portion of rat L39 is related to a fragment of Escherichia coli ribosomal protein S1.  相似文献   

4.
The primary structure of the cytotoxin alpha-sarcin   总被引:2,自引:0,他引:2  
The primary structure of the cytotoxin alpha-sarcin was determined. Eighteen of the 19 tryptic peptides were purified; the other peptide has arginine only. The complete sequence of 17 of the peptides was determined; the sequence of the remaining peptide was determined in part. The sequence of the 39 NH2-terminal residues was obtained by automated Edman degradation. The carboxyl-terminal amino acids were identified after carboxypeptidase treatment. The assignment of the amino acids in the tryptic peptides was confirmed and their alignment established from the sequence of the secondary tryptic peptides obtained after cleavage of citraconylated alpha-sarcin, from the sequence of a 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine peptide, from the sequence of a chymotryptic peptide, and from the sequence of a peptide obtained with Staphylococcus aureus V8 protease. alpha-Sarcin contains 150 amino acid residues; the molecular weight is 16,987. There are disulfide bridges between cysteine residues at positions 6 and 148 and between residues 76 and 132.  相似文献   

5.
As a part of the goal to determine the total sequence of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase, the cyanogen bromide fragments were fractionated and sequenced (or partially sequenced). Twelve of the anticipated 14 peptides were obtained in highly purified form. The other two peptides were located, respectively, within a trytophanyl cleavage product (which overlapped with four CNBr fragments) and within an active-site peptide characterized earlier (which overlapped with three CNBr fragments). These overlaps coupled with amino and carboxyl terminal sequence information of the intact subunit and the availability of the sequence of the corresponding enzyme from higher plants permitted alignment of all fragments. Eight CNBr peptides were sequenced completely; four of the CNBr peptides consisted of more than 80 residues and were only partially sequenced as permitted by direct Edman degradation. Of the approximate 475 residues per subunit, 339 were placed in sequence. The lack of extensive conservation of primary structure between R. rubrum and higher plant carboxylases permits the tentative identifications of those regions likely to be functionally important.  相似文献   

6.
Little is known on the structural ligand requirements for corticotropin-releasing factor binding protein (CRFBP) of the rat used as an important experimental animal. To obtain such information recombinant rat CRFBP was produced in stably transfected HEK 293 cells. The primary structure and posttranslational processing of purified rat CRFBP was established by peptide mapping using HPLC combined with mass spectrometric analysis. Rat CRFBP was pharmacologically characterized employing a competition binding assay with tritium-labeled rat urocortin. The rank order of declining affinity of various CRF analogs was urotensin-I, human/rat CRF (h/rCRF), rat urocortin, sauvagine (Svg), and ovine CRF in agreement with the rank order found for human CRFBP. In contrast to astressin, the CRF receptor 2-selective antagonist anti-sauvagine-30 did not show any detectable specific binding to rat CRFBP. The significance of residues 10 to 12 and 21 to 24 of Svg for its low affinity binding was established by changing these residues of Svg to those of h/rCRF. The corresponding residues 22 to 25 of h/rCRF represented the ARAE motif determined to be crucial for binding in agreement with reported data on human CRFBP. Residues 11 to 13 of CRF introduced into Svg also enhanced the affinity to rat CRFBP.  相似文献   

7.
Lobster arginine kinase [EC 2.7.3.3] contains 2 tryptophanyl residues and 9 methionyl residues. The whole carboxymethylated protein was first subjected to CNBr cleavage and the resulting fragments were isolated by gel filtration and other experimental approaches. One fragment, CB5, which contains 60 residues including the two tryptophanyl residues and two of the five cysteinyl residues of the protein, was characterized and the results are reported inthis paper. The overall strategy for the establishment of the complete sequence of this fragment was based on the use of three types of peptides: (a) whole cyanogen bromide peptide CB5 which was partially characterized by automatic Edman degradation using a sequencer: 42 steps were performed out of 60 residues, (b) tryptic peptides of CB5, (c) peptides formed by cleavage of S-carboxymethylated arginine kinase (whole protein) at the two tryptophanyl residues with BNPS-skatole. The complete amino acid sequence of the CNBr polypeptide (CB5) which contains the two tryptophanyl residues of the whole protein was established.  相似文献   

8.
HNP-2 is a 29-residue peptide present in human neutrophils and is a member of the defensin family of antimicrobial peptides. All defensins contain an invariant disulfide infrastructure comprised of 6 half-cystine residues. The disulfide structure of HNP-2 was determined using a novel method to identify the cross-links involving the amino- and carboxyl-terminal cysteine residues. A derivative of HNP-2 was synthesized by covalent modification of the terminal cysteine residues. This derivative was purified, characterized, and subjected to exhaustive proteolytic digestion. Characterization of purified proteolytic fragments by amino acid analysis and/or sequence analysis identified an oligopeptide containing all 6 cystine residues. This oligopeptide was subjected to a single cycle of Edman degradation to cleave the peptide bond linking 2 adjacent cysteines. Purification and characterization of the Edman reaction products allowed for assignment of the disulfide array in HNP-2, revealing a cystine motif unique to the defensin peptide family. Further, the covalent structure of HNP-2 was found to be cyclic as one disulfide links the amino- and carboxyl-terminal cysteine residues. HNP-2 is the only polypeptide known to possess such a configuration.  相似文献   

9.
Polypeptide VII of cytochrome c oxidase was isolated and purified by gel filtration on Bio-Gel P-10 in 10% acetic acid. Automatic Edman degradation of this peptide chain was not successful, because it is blocked at the N-terminus. The amino acid analysis shows a relatively high content of hydrophilic residues (54%). On the basis of this analysis and the apparent molecular weight by sodium dodecyl sulfate gel electrophoresis and gel filtration, a chain length of about 80 residues was calculated. Among the tryptic peptides one blocked heptapeptide was found. Cleavage of this peptide with thermolysin gave two peptide fragments, one of which was not retained on a cation exchange resin. Mass spectrometric sequence determination of this peptide revealed the structure Ac-Ala-Glu-Asp for the N-terminus of polypeptide VII. Treatment with carboxypeptidase A at two different pH values showed that the C-terminal amino acid is isoleucine and the penultimate amino acid is lysine.  相似文献   

10.
The amino acid sequence of plastocyanin from broad bean was determined. It consists of a single polypeptide chain of 99 residues. The sequence was determined by using a Beckman 890C sequencer and by dansyl-phenyl isothiocyanate analysis of peptides obtained by the enzymic cleavage of purified cyanogen bromide fragments. Some parts of the sequence depend on the results of Edman degradation of peptides for which amino acid analyses were not obtained. The evidence for one overlap is not strong.  相似文献   

11.
We defined the amino acid sequence of adenine phosphoribosyltransferase isolated from human erythrocytes. Peptide fragments formed by cleavage at arginine, lysine, glutamic acid, and methionine were purified by high pressure liquid chromatography and sequenced by manual Edman degradation. The complete primary structure of human adenine phosphoribosyltransferase was established by sequence analysis of 19 peptide fragments. Presumed homology between the human and rodent enzymes was used to order fragments that had inadequate overlapping sequences. The enzyme has 179 residues with a calculated subunit molecular weight of 19,481. Mass spectrometry indicated that the NH2-terminal residue is acetylated. Human adenine phosphoribosyltransferase has sequence homology with xanthine-guanine phosphoribosyltransferase from Escherichia coli in 110-amino acid region encompassing the NH2-terminal section of the enzyme.  相似文献   

12.
The complete amino acid sequence of toxin III of Naja haje (72 residues) has been established mainly by use of a protein sequenator (identification of 70 residues). The two C-terminal residues have been determined by digestion with carboxypeptidases A and B. Addition of succinylated protein or peptide greatly improved the performance of the sequenator for the Edman degradation of peptides: on one peptide (39 residues) degradation went to step 34 with a protein program and on two peptides (10 and 13 residues) degradation reached the last amino acid with a peptide program (use of dimethylbenzylamine). Amino acid analysis of tryptic peptides obtained by digestion of the C-terminal cyanogen bromide peptide are in full agreement with the sequence established by automatic degradation. The sequence of toxin III of Naja haje is unique and is very similar to that of Naja nivea alpha (although there are 9 differences), of Naja melanoleuca b (11 differences) and also to that of Naja naja A (18 differences).  相似文献   

13.
Purification and cDNA cloning of rat 6-pyruvoyl-tetrahydropterin synthase   总被引:2,自引:0,他引:2  
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the second step in the biosynthesis of tetrahydrobiopterin, was purified approximately 18,000-fold to apparent homogeneity from rat liver. The molecular mass of the native enzyme was estimated to be 83 kDa by gel filtration. The enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to a molecular mass of 17 kDa. Up to 24 residues of the NH2-terminal sequence were determined by Edman degradation, which released a single amino acid at each step. These results indicate that the enzyme consists of identical subunits. The purified enzyme was digested with lysyl endopeptidase or V8 protease, and 11 peptide fragments were isolated. On the basis of the sequences of these peptides, oligonucleotides were synthesized and used to screen a rat liver cDNA library, and one cDNA clone was isolated. The complete nucleotide sequence of the 1176-base pair cDNA was then determined. The deduced amino acid sequence contained 144 amino acid residues, but a NH2-terminal four-amino acid sequence was not found in the purified protein. Therefore, the mature protein consists of 140 amino acids. A single mRNA band of 1.3 kilobases was obtained by RNA blot analysis of rat liver. The predicted amino acid sequence of 6-pyruvoyl-tetrahydropterin synthase was compared with the Protein Sequence Database of the National Biomedical Research Foundation, revealing significant local similarity to large T antigens from the polyomavirus family.  相似文献   

14.
The present paper describes the amino acid sequence analysis of the internal and COOH-terminal cyanogen bromide fragments of yeast inorganic pyrophosphatase (Sterner, R., Noyes, C., and Heinrikson, R.L. (1974) Biochemistry 13, 91-99). This information coupled with that derived from earlier structural studies of the enzyme (Sterner, R., AND Heinrikson, R.L. (1975) Arch. Biochem. Biophys. 165, 693-703) provides the complete covalent structure of the pyrophosphatase subunit. The majority of the sequence data was derived from automated Edman degradation of the intact cyanogen bromide fragments and the large tryptic peptides obtained from citraconylated derivates in which cleavages were restricted to arginyl residues. The structural determination was completed by analysis of tryptic and chymotryptic peptides from the decitraconylated fragments. The monomer peptide chain contains 285 amino acid residues and the molecular weight calculated from the sequence analysis is 32,042.  相似文献   

15.
The products and an intermediate of preprosomatostatin-II processing in the anglerfish islet were purified and subjected to structural analysis. The peptides isolated identify the site of signal cleavage (between Ser-24 and Gln-25). The prohormone is further processed at Arg-97 and, to a lesser extent, at the two adjacent basic amino acid residues Lys-61 and Arg-62. A 28-residue somatostatin is also generated which can be hydroxylated at Lys-23. A proteolytic processing site which would form the 14-residue somatostatin does not appear to be used to a significant degree. Fast atom bombardment mass spectrometry (FABMS) was used to demonstrate that the amino-terminal residues of peptides 25-60, and 25-90 are pyroglutamic acid, a modification which precludes Edman degradation of these peptides. Analysis of the peptides and tryptic peptide maps by FABMS allowed confirmation of the sites of prohormone conversion and indicated that terminal basic residues were removed during processing. Three amino acid residues were also found to differ from the amino acid sequence deduced from the cDNA and were localized to specific regions by FABMS analysis. Residues found to differ from the cDNA (cDNA in parentheses) were: Asp-77 (Thr), Val-78 (Phe), and Gly-90 (Glu). Mass assignments were confirmed by running a single cycle of Edman degradation prior to FABMS. The peptides noted above were also examined by Edman sequence analysis. The sequence of a cDNA clone to preprosomatostatin-II was re-examined in light of the observed differences at the protein level. This study emphasizes the utility of FABMS in prohormone processing studies and in identification of post-translational processing events.  相似文献   

16.
Liver microsomal, flavin-containing monooxygenases catalyze NADPH- and oxygen-dependent oxidation of a wide variety of antipsychotic and narcotic drugs. Two forms of these enzymes have been isolated and partially characterized (Ozols, J. (1989) Biochem. Biophys. Res. Commun. 163, 49-55). The amino acid sequence of form 1 is presented here. Sequence determination has been achieved by automated Edman degradation of peptides generated by chemical and enzymatic cleavages. The NH2 terminus of form 1 oxygenase is blocked. Partial acid hydrolysis of the blocked peptides removed acetyl groups and permitted their analysis by Edman degradation. Form 1 monooxygenase contains 536 residues. A peptide of 32 residues at the COOH terminus of the protein could not be sequenced in a gas-phase or pulsed liquid-phase sequenator, due to its extreme hydrophobicity. Covalent coupling of this peptide to an aryl amine membrane by means of carbodiimide, followed by automated solid-phase sequencing, established the order of 30 amino acid residues. The hydrophobic segment at the COOH terminus presumably functions to anchor the monooxygenase to the microsomal membrane. The amino acid sequence of form 1 monooxygenase, despite overlapping substrate specificity, is not related to the cytochrome P-450 superfamily. Comparison of the sequence of form 1 oxygenase with other known sequences, except for some short segments similar to those in the bacterial flavin-containing monooxygenases, did not reveal significant sequence similarities that would suggest a structural or evolutionary relationship.  相似文献   

17.
L-lactate dehydrogenase of the psychrophilic bacterium B. psychrosaccharolyticus was isolated by a three-step procedure and its total amino-acid sequence determined by automated Edman degradation. The protein consists of 318 amino-acid residues and its calculated molecular mass is 35,254 Da. Most of the primary structure could be established by sequencing large peptide fragments obtained by chemical cleavages, namely with BNPS-skatole and with CNBr. Further fragmentations of two tryptophan peptides with the endoproteinase Lys-C and with diluted HCl resulted in shorter overlapping peptides, the analysis of which completed the sequence. The C-terminal sequence Glu-Gln was established by carboxypeptidase A experiments and was then verified by the analysis of short C-terminal tryptic and chymotryptic peptides. The first lactate dehydrogenase sequenced so far of a psychrophilic bacillus shows sequence homologies between 60% and 75% to the enzymes from the mesophilic B. megaterium and B. subtilis and the thermophilic B. stearothermophilus, B. caldolyticus and B. caldotenax. Within the 50 N-terminal residues, three additional sequences could be included in our comparisons. In this part of the molecule, sequence homologies between 56% and 74% were calculated.  相似文献   

18.
NADH-cytochrome b5 reductases purified from bovine erythrocytes and from bovine brain and liver microsomes solubilized with lysosomal protease were subjected to structural analysis by using HPLC mapping, amino acid analysis of the resulting peptides, and NH2-terminal sequence analysis of apoproteins. HPLC maps of the tryptic peptides derived from these enzymes were very similar to each other, and amino acid analysis of the HPLC-separated peptides indicated that the structures of these enzymes are identical except for the NH2-terminal region. The NH2-terminal sequence of the brain enzyme determined by automated Edman degradation was as follows: NH2-Phe-Gln-Arg-Ser-Thr-Pro-Ala-Ile-Thr-Leu-Glu-Asn-Pro-Asp- Ile-Lys-Tyr-Pro-Leu-Arg-Leu-Ile-Asp-Lys-Glu-Val-Ile- This sequence is identical to that of liver enzyme except that the liver enzyme started at the 3rd Arg or 4th Ser. The NH2-terminal amino acid residue of the soluble erythrocyte enzyme was not detected by automated Edman degradation. The sequence analysis of a tryptic peptide from the erythrocyte enzyme indicated that Leu is present before the NH2-terminal Phe of the brain enzyme. The recently reported sequence of the apparently identical protein (Ozols et al. (1985) J. Biol. Chem. 260, 11953-11961) differs in two amino acid assignments from our sequence.  相似文献   

19.
J M Seyer  C Mainardi  A H Kang 《Biochemistry》1980,19(8):1583-1589
Type III collagen was prepared from human liver by limited pepsin digestion, differential salt precipitation, and carboxymethylcellulose chromatography. Ten distinct peptides were obtained by cyanogen bromide digestion. The peptide alpha 1 (III)-CB5 was further purified by carboxymethylcellulose chromatography, and its amino acid sequence was determined. Automatic Edman degradation of intact alpha 1 (III)-CB5, tryptic and thermolytic peptides, and hydroxylamine-derived fragments was used to establish the total sequence. The mammalian collagenase site contained in the alpha 1 (III)-CB5 sequence was ascertained by digestion of native type III collagen with purified rheumatoid synovial collagenase. Collagenase cleavage occurred at a single Gly--Ile bond, one triplet before the corresponding specific cleavage site of type I collagen. The present work brings the known sequence of human liver type III collagen to include alpha 1 (III)-CB3-7-6-1-8-10-2-4-5. These correspond to the homologous region of alpha 1 (I)-CB0-1-2-4-5-8-3-7 residues 11--804.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号