首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of levofloxacin against aerobic bacteria has been well documented both in vitro and clinically, but its anaerobic activity has been infrequently studied. This new fluoroquinolone exhibits good in vitro activity (MIC(S) < or =2.0 microg/mL) against many anaerobic pathogens associated with acute sinusitis, bite wounds, and other soft-tissue infections. It is less active against Bacteroides fragilis (MIC (90)=2-4 microg/mL ) and has poor inhibitory activity against non-fragilis B. fragilis group species that are associated with gastrointestinal and genitourinary tract infections. Levofloxacin does not antagonize the in vitro activity of clindamycin and metronidazole and often provides additive or synergistic activity against anaerobic bacteria with these agents. In pharmacodynamic models, levofloxacin exhibits rapid bactericidal activity at 2-4 times the MIC of anaerobic bacteria. Prolonged killing is observed when the area-under-the concentration-time-curve to MIC ratio is greater than 40. In clinical efficacy trials, levofloxacin has been effective in the treatment of patients with gynecologic, skin and skin-structure, and bone infections involving anaerobic pathogens. Both micro-biologic and pharmacodynamic studies support further evaluations of levofloxacin in the treatment of selective mixed aerobic/anaerobic infections.  相似文献   

2.
3.
新抗生素莫西沙星国内外研究应用最新进展   总被引:10,自引:0,他引:10  
莫西沙星(moxifloxacin)属第四代氟喹诺酮类抗菌药物。莫西沙星通过抑制细菌的DNA螺旋酶A亚单位和拓扑异构酶IV的活性,阻断DNA的复制,从而发挥杀菌作用。对革兰阴性菌、阳性菌均有强大的抗菌能力,对支原体、衣原体、军团菌有效,对厌氧菌感染有效,尤其对某些临床常见的耐药菌有效。临床应用莫西沙星治疗社区获得性肺炎、急性细菌性鼻窦炎、泌尿生殖系感染、继发性腹膜炎、肺结核的早期及延长早期间治疗、强直性脊椎炎和皮肤、皮下组织感染的治疗。  相似文献   

4.
Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics.  相似文献   

5.
《Anaerobe》2008,14(6):297-300
This review describes the microbiology, diagnosis and medical management of chronic suppurative otitis media (CSOM) in children highlighting the role of anaerobic bacteria. In studies that employed adequate method for recovery of anaerobic bacteria polymicrobial aerobic and anaerobic flora was isolated from over half of the children with CSOM. The predominant aerobic isolates were Staphylococcus aureus and Pseudomonas aeruginosa and the most frequently isolated anaerobic organisms were Peptostreptococcus, Fusobacterium spp. and pigmented Prevotella and Porphyromonas spp. Several studies illustrated the efficacy of anti-infective agents effective against anaerobic bacteria in the treatment of CSOM. The medical therapy of CSOM should be directed at the eradication of the pathogenic aerobic and anaerobic organisms.  相似文献   

6.
Five different anaerobic culture methods and several different media were compared for their ability to recover anaerobes from clinical specimens. Specimens were obtained from patients with documented infections, avoiding contamination with normal flora, and immediately placed in an anaerobic transporter. Each specimen was cultured by all methods and on all the various media. The comparative data indicate that anaerobic jars (GasPak and evacuation-replacement types) are just as effective in the recovery of clinically significant anaerobes as the more complex roll-tube and chamber methods employing prereduced media. Liquid media were disappointing as a "back-up" system but chopped-meat glucose was superior to two thioglycolate formulations. Growth of all anaerobes was poorer on selective media, but these media were very helpful in the workup of specimens containing mixed growth of anaerobic and facultative organisms. A variety of different anaerobes was isolated, but no very fastidious or extremely oxygen-sensitive organisms were recovered. This suggests that such organisms may not play a significant role in causing clinical infections.  相似文献   

7.
Sears CL 《Anaerobe》2012,18(2):192-196
Dr. Sydney Finegold is one of the most heralded leaders in the discovery, classification and scientific knowledge of anaerobic bacteria. On this occasion of his 90th birthday, this paper celebrates his lifetime of accomplishments and provides a perspective on the changes and growth in our understanding of one anaerobic species, Bacteroides fragilis. Over the last nearly 40 years, clinical and research data have fostered our current view that B. fragilis are essential symbiotes as well as, in some circumstances, pathogens with the capacity to induce both acute systemic and abdominal illnesses and possibly chronic colonic diseases.  相似文献   

8.
Representative strains of anaerobic bacteria from human infections were used to evaluate broth media, gas mixtures, and inocula for use in developing a procedure for performing minimal inhibitory concentration antimicrobic susceptibility tests. Nine commercially available media, including two that were chemically defined, were tested. Tests were performed in atmospheres with carbon dioxide concentrations between 2.5 and 10% and also in the GasPak system (BBL) that had a disposable hydrogen-carbon dioxide generator. Growth curves on each organism grown in schaedler broth and a 5% carbon dioxide atmosphere were used to determine growth characteristics, equate time of the particular growth phases to turbidity readings, and determine the numbers of viable organisms present in the culture. Schaedler broth proved to be most advantageous in combination with an atmosphere of 5% carbon dioxide, 10% hydrogen, and 85% nitrogen. The growth curve studies yielded valuable data on the rapidity and quantity of growth under these conditions. We believe these data have provided information which can be used as the basis for developing a standardized procedure for antimicrobic susceptibility testing for anaerobic bacteria.  相似文献   

9.
Antagonistic activity of Lactobacillus strains has been known for some time. This property is connected with production of many active substances by lactobacilli e.g., organic acids and bacteriocin-like substances which interfere with other indigenous microorganisms inhabiting the same ecological niche, including also anaerobic gastrointestinal tract pathogens. Growing interest of clinical medicine in finding new approaches to treatment and prevention of common inflammatory infections of the digestive tract resulted in studies on a possible usage of lactic acid bacteria. Last years, several in vitro and in vivo experiments on antagonism of different Lactobacillus strains against Helicobacter pylori and Clostridium difficile were performed. These observations had been done on already established, well known probiotic Lactobacillus strains. We tested antibacterial activities of Lactobacillus strains isolated from human digestive tract. As indicator bacteria, four species known as anaerobic bacterial etiologic agents of gastroenteric infections: Helicobacter pylori, Campylobacter jejuni, C. coli and Clostridium difficile were used. Some of them were obtained from international collections, others were clinical isolates from specimens taken from patients with different defined gastrointestinal infections. We used a slab method of testing inhibitory activity described in details previously. Following conclusions were drawn from our study: All tested human Lactobacillus strains were able to inhibit the growth of all strains of anaerobic human gastrointestinal pathogens used in this study. Inhibitory activities of tested Lactobacillus strains against Helicobacter pylori, Campylobacter spp., and Clostridium difficile as measured by comparing mean diameters of the inhibition zones were similar. Differences in susceptibility of individual indicator strains of Campylobacter spp. and Clostridium difficile to inhibitory activity of Lactobacillus strains were small. A similar mechanism of inhibition of anaerobic bacteria by lactobacilli is postulated.  相似文献   

10.
The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung infections in cystic fibrosis (CF) patients for more than 20 years. We used fluorescence in situ hybridization (FISH) directly on sputum specimens to examine the spatial distribution of the infecting P. aeruginosa cells. Mucoid variants were present in sputum as cell clusters surrounded by an extracellular matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of rRNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary-phase subpopulation seemed to be present in sputa. This was found for both mucoid and nonmucoid variants despite their different organizations in sputum. The results suggest that the bacterial population may be confronted with selection forces that favor optimized growth activities. This scenario constitutes a new perspective on the adaptation and evolution of P. aeruginosa during chronic infections in CF patients in particular and on long-term infections in general.  相似文献   

11.
Brook I 《Anaerobe》2012,18(2):214-220
Anaerobes are the predominant components of oropharyngeal mucous membranes bacterial flora, and are therefore a common cause of bacterial infections of endogenous origin of upper respiratory tract and head and neck. This review summarizes the aerobic and anaerobic microbiology and antimicrobials therapy of these infections. These include acute and chronic otitis media, mastoiditis and sinusitis, pharyngo-tonsillitis, peritonsillar, retropharyngeal and parapharyngeal abscesses, suppurative thyroiditis, cervical lymphadenitis, parotitis, siliadenitis, and deep neck infections including Lemierre Syndrome. The recovery from these infections depends on prompt and proper medical and when indicated also surgical management.  相似文献   

12.
Finegold SM  John SS  Vu AW  Li CM  Molitoris D  Song Y  Liu C  Wexler HM 《Anaerobe》2004,10(4):205-211
Susceptibility of intestinal bacteria to various antimicrobial agents in vitro, together with levels of those agents achieved in the gut, provides information on the likely impact of the agents on the intestinal flora. Orally administered drugs that are poorly absorbed may be useful for treatment of intestinal infections and for certain other situations in which intestinal bacteria may play a role. The antimicrobial activity of ramoplanin (MDL 62,198) against 928 strains of intestinal anaerobic bacteria was determined using the NCCLS-approved Wadsworth brucella laked-blood agar dilution method. The activity of ramoplanin was compared with that of ampicillin, bacitracin, metronidazole, trimethoprim/sulfamethoxazole (TMP/SMX), and vancomycin. The organisms tested included Bacteroides fragilis group (n=89), other Bacteroides species (n=16), other anaerobic Gram-negative rods (n=56) anaerobic cocci (n=114), Clostridium species (n=426), and non-sporeforming anaerobic Gram-positive rods (n=227). The overall MIC(90)s of ramoplanin, ampicillin, bacitracin, metronidazole, and vancomycin were 256, 32, 128, 16, and 128 mcg/ml, respectively. Ramoplanin was almost always highly active vs. Gram-positive organisms and relatively poor in activity against Gram-negative organisms, particularly Bacteroides, Bilophila, Prevotella, and Veillonella. Vancomycin was quite similar to ramoplanin in its activity. Ampicillin was relatively poor in activity vs. organisms that often produce beta-lactamase, including most of the Gram-negative rods as well as Clostridium bolteae and C. clostridioforme. Bacitracin was relatively poor in activity against most anaerobic Gram-negative rods, but better vs. most Gram-positive organisms. Metronidazole was very active against all groups other than bifidobacteria and some strains of other types of non-sporeforming Gram-positive bacilli. TMP/SMX was very poorly active, with an MIC(90) of >2048 mcg/ml.  相似文献   

13.
Brook I  Frazier EH  Cox ME  Yeager JK 《Anaerobe》1995,1(6):305-307
Specimens from 32 pustular acne lesions that were inoculated on media supportive for the growth of aerobic and anaerobic bacteria showed bacterial growth. Only aerobic or facultative bacteria were recovered in 15 (47%) specimens, only anaerobic bacteria in 11 (34%) specimens, and mixed aerobic and anaerobic bacteria in 6 (18%) specimens. A total of 57 isolates, 31 anaerobes (1.0 per specimen) and 26 aerobes (0.8 per specimen) were recovered. The predominant isolates were Staphylococcus sp. (19 isolates), Peptostreptococcus sp. (15), and Propionibacterium sp. (10). Twelve (37.5%) of the comedones yielded only one organism. This retrospective study highlighted the polymicrobial nature of over two-thirds of culture positive pustular acne lesions and suggests the potential for pathogenic role of aerobic and anaerobic organisms other than P. acnes and Staphylococcus sp. in acne vulgaris.  相似文献   

14.
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth.The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2'',7''-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.  相似文献   

15.
The occurrence of denitrification in extremely halophilic bacteria   总被引:3,自引:0,他引:3  
Abstract A total of 97 aerobic and facultatively anaerobic bacteria, and 3 Candida albicans , were tested for their ability to inhibit the growth of Haemophilus influenzae . Only strains of Pseudomonas aeruginosa showed any inhibitory effect and all 5 strains tested clearly inhibited the growth of all 10 strains of H. influenzae . The inhibition of H. influenzae . by Ps. aeruginosa may play a role in the establishment of chronic Ps. aeruginosa infections in the respiratory tracts of patients with bronchiectasis and cystic fibrosis (CF).  相似文献   

16.
120例急性腹膜炎患者临床标本中的无芽孢厌氧菌检出率高达65.8%(79/120),其中以脆弱类杆菌检出率最高(15.8%),检出率较高的其它无芽孢厌氧菌依次为产生消化链球菌(11.7%)、多毛类杆菌(10.8%)和不解糖消化链球菌(10.0%).实验结果表明,无芽孢厌氧菌是急性腹膜炎的重要病原菌.  相似文献   

17.
Hundreds of bacterial species make up human gut flora. Of these, 99% are anaerobic bacteria. Although anaerobes are part of the normal commensal flora, they can become opportunistic pathogens, causing serious, sometimes fatal infections if they escape from the colonic milieu. Most often, this escape occurs as a result of perforation, surgery, diverticulitis or cancer. Infections involving anaerobic bacteria are often difficult to treat because antibiotic resistance is increasing among the genera, mediated primarily through horizontal transfer of a plethora of mobile DNA transfer factors. Some of these transfer factors can also be transmitted to aerobic bacteria. It is becoming increasingly clear that antibiotic resistance trends have to be carefully monitored, and the transfer factors and mechanisms of transfer understood at a molecular level to avoid negative clinical outcomes when infections involve anaerobic bacteria.  相似文献   

18.
Protozoa are among the most important pathogens that can cause infections in immunocompromised hosts. These microorganisms particularly infect individuals with impaired cellular immunity, such as those with hematological neoplasias, renal or heart transplant patients, patients using high doses of corticosteroids, and patients with acquired immunodeficiency syndrome. The protozoa that most frequently cause disease in immunocompromised patients are Toxoplasma gondii, Trypanosoma cruzi, different Leishmania species, and Cryptosporidium parvum; the first two species cause severe acute meningoencephalitis and acute myocarditis, Leishmania sp. causes mucocutaneous or visceral disease, and Cryptosporidium can lead to chronic diarrhea with hepatobiliary involvement. Various serological, parasitological, histological and molecular methods for the diagnosis of these infections are currently available and early institution of specific therapy for each of these organisms is a basic measure to reduce the morbidity and mortality associated with these infections.  相似文献   

19.
Salmonella enterica subspecies can establish persistent, systemic infections in mammals, including human typhoid fever. Persistent S. enterica disease is characterized by an initial acute infection that develops into an asymptomatic chronic infection. During both the acute and persistent stages, the bacteria generally reside within professional phagocytes, usually macrophages. It is unclear how salmonellae can survive within macrophages, cells that evolved, in part, to destroy pathogens. Evidence is presented that during the establishment of persistent murine infection, macrophages that contain S. enterica serotype Typhimurium are hemophagocytic. Hemophagocytic macrophages are characterized by the ingestion of non-apoptotic cells of the hematopoietic lineage and are a clinical marker of typhoid fever as well as certain other infectious and genetic diseases. Cell culture assays were developed to evaluate bacterial survival in hemophagocytic macrophages. S. Typhimurium preferentially replicated in macrophages that pre-phagocytosed viable cells, but the bacteria were killed in macrophages that pre-phagocytosed beads or dead cells. These data suggest that during persistent infection hemophagocytic macrophages may provide S. Typhimurium with a survival niche.  相似文献   

20.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号