首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using theArabidopsis ethylene receptorETR1 as a probe, we have isolated a tomato homologue (tETR) from a ripening cDNA library. The predicted amino acid sequence is 70% identical toETR1 and homologous to a variety of bacterial two component response regulators over the histidine kinase domain. Sequencing of four separate cDNAs indicates that tETR lacks the carboxyl terminal response domain and is identical to that encoded by the tomatoNever ripe gene. Ribonuclease protection showed tETR mRNA was undetectable in unripe fruit or pre-senescent flowers, increased in abundance during the early stages of ripening, flower senescence, and in abscission zones, and was greatly reduced in fruit of ripening mutants deficient in ethylene synthesis or response. These results suggest that changes in ethylene sensitivity are mediated by modulation of receptor levels during development.  相似文献   

3.
番茄果实中乙烯与多聚半乳糖醛酸酶的关系   总被引:6,自引:0,他引:6  
乙烯与多聚半乳糖醛酸酶(PG)都是果实成熟过程中关键的调节因子.一方面,在有乙烯合成缺陷的转反义ACS番茄和乙烯感受缺陷的Nr突变体番茄果实中PG基因表达量都明显下降,PG酶活性明显降低;用外源乙烯(100 μL/L)处理绿熟期番茄果实使PG基因的表达明显增强,而1-甲基环丙烯(1-MCP,1 μL/L)处理转色期番茄果实明显抑制PG基因表达.另一方面,转反义PG基因番茄果实乙烯释放量在授粉后低于其野生型,番茄乙烯受体基因LeETR4和乙烯反应因子LeERF2基因表达量比野生种低.PG降解果胶的产物D-GA(100 mg/L)促进未熟期番茄果实中的乙烯生成和LeETR4、LeERF2基因的表达.  相似文献   

4.
5.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

6.
The never ripe mutation blocks ethylene perception in tomato.   总被引:19,自引:1,他引:18       下载免费PDF全文
Seedlings of tomato fruit ripening mutants were screened for their ability to respond to ethylene. Ethylene induced the triple response in etiolated hypocotyls of all tomato ripening mutants tested except for one, Never ripe (Nr). Our results indicated that the lack of ripening in this mutant is caused by ethylene insensitivity. Segregation analysis indicated that Nr-associated ethylene insensitivity is a single codominant trait and is pleiotropic, blocking senescence and abscission of flowers and the epinastic response of petioles. In normal tomato flowers, petal abscission and senescence occur 4 to 5 days after the flower opens and precede fruit expansion. If fertilization does not occur, pedicel abscission occurs 5 to 8 days after petal senescence. If unfertilized, Nr flowers remained attached to the plant indefinitely, and petals remained viable and turgid more than four times longer than their normal counterparts. Fruit development in Nr plants was not preceded by petal senescence; petals and anthers remained attached until they were physically displaced by the expanding ovary. Analysis of engineered 1-aminocyclopropane-1-carboxylate (ACC) synthase-overexpressing plants indicated that they are phenotypic opposites of Nr plants. Constitutive expression of ACC synthase in tomato plants resulted in high rates of ethylene production by many tissues of the plant and induced petiole epinasty and premature senescence and abscission of flowers, usually before anthesis. There were no obvious effects on senescence in leaves of ACC synthase overexpressers, suggesting that although ethylene may be important, it is not sufficient to cause tomato leaf senescence; other signals are clearly involved.  相似文献   

7.
Myo-Inositol-Dependent Sodium Uptake in Ice Plant   总被引:39,自引:0,他引:39  
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.  相似文献   

8.
Dominant mutations in the Arabidopsis ETR1 gene block the ethylene signal transduction pathway. The ETR1 gene has been cloned and sequenced. Using the ETR1 cDNA as a probe, we identified a cDNA homologue (eTAE1) from tomato. eTAE1 contains an open reading frame encoding a polypeptide of 754 amino acid residues. The nucleic acid sequence for the coding sequence in eTAE1 is 74% identical to that for ETR1, and the deduced amino acid sequence is 81% identical and 90% similar. Genomic Southern blot analysis indicates that three or more ETR1 homologues exist in tomato. RNA blots show that eTAE1 mRNA is constitutively expressed in all the tissues examined, and its accumulation in leaf abscission zones was unaffected by ethylene, silver ions (an inhibitor of ethylene action) or auxin.  相似文献   

9.
10.
Ethylene receptor degradation controls the timing of ripening in tomato fruit   总被引:15,自引:0,他引:15  
Fruit ripening in tomato requires the coordination of both developmental cues and the phytohormone ethylene. The multigene ethylene receptor family has been shown to negatively regulate ethylene signal transduction and suppress ethylene responses. Here we demonstrate that reduction in the levels of either of two family members, LeETR4 or LeETR6, causes an early-ripening phenotype. We provide evidence that the receptors are rapidly degraded in the presence of ethylene, and that degradation probably occurs through the 26S proteasome-dependent pathway. Ethylene exposure of immature fruits causes a reduction in the amount of receptor protein and earlier ripening. The results are consistent with a model in which receptor levels modulate timing of the onset of fruit ripening by measuring cumulative ethylene exposure.  相似文献   

11.
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.  相似文献   

12.
13.
14.
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein–protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro . Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea , which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.  相似文献   

15.
LeETR1反义基因对番茄的遗传转化   总被引:15,自引:0,他引:15  
从番茄果实中提取总RNA,根据GeneBank中LeETR1序列,设计合成特异性引物,利用RT-PCR及技术克隆了LeETR1基因3’端非编码区313bp的cDNA,经酶切图谱和序列分析鉴定无误后,反向插入到植物表达载体pPZP11A中,构建了表达LeETR1反义RNA的双元载体。经农杆菌途径转化番茄品种B1后,通过PCR检测从抗卡那霉素再生植株中筛选到13株阳性植株,Southern blot杂交确证反义基因已经整合到番茄染色体中。对果实乙烯释放的测定结果表明,转基因番茄乙烯释放高峰的出现比对照果实推迟10天,番茄红素的合成受到显抑制,果实不能形成正常的红色。推测LeETR1和番茄的成熟有着密切的关系。  相似文献   

16.
17.
A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product -aminobutyric acid (GABA) in fruit, are discussed.  相似文献   

18.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

19.
20.
A study of ethylene in apple, red raspberry, and cherry   总被引:10,自引:6,他引:4       下载免费PDF全文
High ethylene levels were associated with flower abscission in apple (Malus sylvestris) and cherry (Prunus avium and Prunus cerasus), “June drop” of immature cherries, and harvest drop of apple and red raspberry (Rubus idaeus). However, an increase in ethylene content was not associated with June drop of apples and harvest drop of cherries. During the period of fruit ripening on the plant, the largest increases in ethylene occurred in apple flesh and red raspberry receptacular tissue. Ethylene remained low throughout the period of sweet and tart cherry ripening. The data obtained indicated marked ethylene gradients between adjacent tissues. Increases of ethylene in some tissues may have resulted from ethylene diffusion from adjacent tissues containing high levels of ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号