首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM).  相似文献   

2.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

3.
Identification of mechanisms of modulation of the TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis is important for its potential use in anticancer therapy. Ethanol can induce cell death in vitro and in vivo by different signalling pathways. Its effect in combination with death ligands is unknown. We investigated how ethanol modulates the effects of TRAIL in colon cancer cells. After combined TRAIL and ethanol treatment, a potentiation of caspase-8, -9, -3 activation, a proapoptotic Bid protein cleavage, a decrease of mitochondrial membrane potential, a complete poly(ADP)ribose polymerase cleavage, and disappearance of antiapoptotic Mcl-1 protein were demonstrated. Ethanol acts as a potent agent sensitizing colon cancer cells to TRAIL-induced apoptosis.  相似文献   

4.
5.
The mechanisms through which Caspase-2 leads to cell death are controversial. Here we show, using a combination of cell-free and cell culture-based approaches, that cleavage of the Bcl-2-family protein Bid is required for the induction of apoptosis by Caspase-2. Caspase-2 promoted cytochrome c release from mitochondria in the presence of cytosol from wild-type, but not Bid-deficient, mouse embryonic fibroblasts (MEFs). Recombinant wild-type Bid, but not a noncleavable mutant (D59E), restored cytochrome c release. Similarly, Bid-null MEFs were relatively resistant to apoptosis triggered by active Caspase-2, and apoptosis was restored in Bid-null cells by the expression of wild-type, but not D59E, Bid. Finally, Bid-null MEFs were substantially more resistant to apoptosis induced by heat shock, which has been shown to be dependent on apical activation of Caspase-2. The data are consistent with a model in which Caspase-2 induces apoptosis via cleavage of Bid at D59 and the subsequent engagement of the mitochondrial (intrinsic) pathway.  相似文献   

6.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

7.
Induction of apoptosis in cancer cells has become the major focus of anti-cancer therapeutics development. WithaferinA, a major chemical constituent of Withania somnifera, reportedly shows cytotoxicity in a variety of tumor cell lines while its molecular mechanisms of action are not fully understood. We observed that withaferinA primarily induces oxidative stress in human leukemia HL-60 cells and in several other cancer cell lines. The withanolide induced early ROS generation and mitochondrial membrane potential (Δψmt) loss, which preceded release of cytochrome c, translocation of Bax to mitochondria and apoptosis inducing factor to cell nuclei. These events paralleled activation of caspases −9, −3 and PARP cleavage. WA also activated extrinsic pathway significantly as evidenced by time dependent increase in caspase-8 activity vis-à-vis TNFR-1 over expression. WA mediated decreased expression of Bid may be an important event for cross talk between intrinsic and extrinsic signaling. Furthermore, withaferinA inhibited DNA binding of NF-κB and caused nuclear cleavage of p65/Rel by activated caspase-3. N-acetyl-cysteine rescued all these events suggesting thereby a pro-oxidant effect of withaferinA. The results of our studies demonstrate that withaferinA induced early ROS generation and mitochondrial dysfunction in cancer cells trigger events responsible for mitochondrial -dependent and -independent apoptosis pathways.  相似文献   

8.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

9.
10.
PKC inhibitor safingol suppressed the growth of human oral squamous cell carcinoma (SCC) cells significantly at concentrations that inhibit PKC isoforms. Safingol inhibited the translocation of PKC following treatment with 12-o-tetradecanoylphorbol 13-acetate (TPA) in PKC α-EGFP-transfected cells, but not in PKC β-EGFP- transfected cells, indicating selective inhibition for PKC α in oral SCC cells. Flow cytometric analysis and DNA analysis by agarose gel electrophoresis revealed an increase in the proportion of sub-G1 cells and DNA fragmentation in safingol-treated cells. Mitochondrial membrane potential was decreased, and cytochrome c was released from mitochondria. However, the safingol-induced cell death was not accompanied by activation of caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). The broad-spectrum caspase inhibitor BD-fmk failed to prevent safingol-induced cell death. Another apoptogenic factor endonuclease G, but not apoptosis-inducing factor (AIF), was also released from mitochondria and translocated to the nucleus. These results suggest that PKC α inhibitor safingol induces an endonuclease G- mediated apoptosis in a caspase-independent manner.  相似文献   

11.
We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein.  相似文献   

12.
This study was aimed to evaluate the apoptotic effects of thiosulfinates purified from Allium tuberosum L. on PC-3 human prostate cancer cells, and to elucidate detailed apoptosis mechanisms. Thiosulfinates significantly decrease viable cell numbers in dose- and time-dependent manners by apoptotic cell death via DNA fragmentation, chromatin condensation, and an increased sub-G1 phase. Apoptosis induced by thiosulfinates is associated with the activation of initiator caspase-8 and -9, and the effector caspase-3. In this study, thiosulfinates stimulated Bid cleavage, indicating that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. Thiosulfinates decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. Thiosulfinates also increased the expression of AIF, a caspase-independent mitochondrial apoptosis factor, in PC-3 cells. These results indicate that thiosulfinates from A. tuberosum L. inhibit cell proliferation and induce apoptosis in PC-3 cells, which may be mediated via both caspase-dependent and -independent pathways.  相似文献   

13.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

14.
15.
Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of κB kinase (IKK)-β resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential ΔΨm and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.  相似文献   

16.
Myrtucommulone (MC) is a unique, nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis). Here, we addressed the potential of MC to induce apoptosis of cancer cells. MC potently induced cell death of different cancer cell lines (EC50 3–8 μM) with characteristics of apoptosis, visualized by the activation of caspase-3, -8 and -9, cleavage of poly(ADP-ribose)polymerase (PARP), release of nucleosomes into the cytosol, and DNA fragmentation. MC was much less cytotoxic for non-transformed human peripheral blood mononuclear cells (PBMC) or foreskin fibroblasts (EC50 cell death = 20–50 μM), and MC up to 30 μM hardly caused processing of PARP, caspase-3, -8 and -9 in human PBMC. MC-induced apoptosis was mediated by the intrinsic rather than the extrinsic death pathway. Thus, MC caused loss of the mitochondrial membrane potential in MM6 cells and evoked release of cytochrome c from mitochondria. Interestingly, Jurkat cells deficient in caspase-9 were resistant to MC-induced cell death and no processing of PARP or caspase-8 was evident. In cell lines deficient in either CD95 (Fas, APO-1) signalling, FADD or caspase-8, MC was still able to potently induce cell death and PARP cleavage. Conclusively, MC induces apoptosis in cancer cell lines, with marginal cytotoxicity for non-transformed cells, via the mitochondrial cytochrome c/Apaf-1/caspase-9 pathway. I. Tretiakova and D. Blaesius contributed equally to this work.  相似文献   

17.
Although induction of apoptosis by bovine ephemeral fever virus (BEFV) in several cell lines has been previously demonstrated by our laboratory, less information is available on the process of BEFV-induced apoptosis in terms of cellular pathways and specific proteins involved. In order to determine the step in viral life cycle at which apoptosis of infected cells is triggered, chemical and physical agents were used to block viral infection. Treatment of BHK-21 infected cells with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BEFV was seen to abrogate virus apoptosis induction, suggesting that virus uncoating and gene expression are required for the induction of apoptosis. Using soluble death receptors Fc:Fas chimera to block Fas signaling, BEFV-induced apoptosis was inhibited in cells. BEFV infection of BHK-21 cells results in the Fas-dependent activation of caspase 8 and cleavage of Bid. This initiated the dissipation of the membrane potential and the release of cytochrome c but not AIF or Smac/DIABLO from mitochondrial into cytoplasm leading to activation of caspase 9. Combined activation of the death receptor and mitochondrial pathways results in activation of the downstream effecter caspase 3 leading to cleavage of PARP. Fas-mediated BEFV-induced apoptosis could be suppressed by the overexpression of Bcl-2 or by treatment with caspase inhibitors and soluble death receptors Fc:Fas chimera. Taken together, this study provided first evidence demonstrating that BEFV-induced apoptosis requires viral gene expression and occurs through the activation of Fas and mitochondrion-mediated caspase-dependent pathways. An erratum to this article can be found at  相似文献   

18.
Ultraviolet (UV) irradiation is a DNA-damaging agent that triggers apoptosis through both themembrane death receptor and mitochondrial apoptotic signaling pathways.Bid,a pro-apoptotic Bcl-2family member,is important in most cell types to apoptosis in response to DNA damage.In this study,arecombinant plasmid,YFP-Bid-CFP,comprised of yellow and cyan fluorescent protein and a full length Bid,was used as a fluorescence resonance energy transfer analysis (FRET) probe.Using the FRET techniquebased on YFP-Bid-CFP,we found that Bid activation was initiated at 9±1 h after UV irradiation,and theaverage duration of the activation was 75±10 min.Bid activation coincided with a collapse of the mitochondrialmembrane potential with an average duration of 50±10 min. When cells were pretreated with Z-IETD-fmk(caspase-8 specific inhibitor) the process of Bid activation was completely inhibited,but the apoptosis wasonly partially affected.Z-DEVD-fmk (caspase-3 inhibitor) and Z-FA-fmk (non asp specific inhibitor) didnot block Bid activation.Furthermore,the endogenous Bid activation with or without Z-IETD-fmk in responseto UV irradiation was confirmed by Western blotting.In summary, using the FRET technique,we observedthe dynamics of Bid activation during UV-induced apoptosis and found that it was a caspase-8 dependentevent.  相似文献   

19.
Wu Y  Xing D  Chen WR  Wang X 《Cellular signalling》2007,19(12):2468-2478
UV irradiation triggers apoptosis through both the membrane death receptor and the intrinsic apoptotic signaling pathways. Bax, a member of the Bcl-2 family of proteins, translocates from the cytosol to the mitochondrial membrane during UV-induced apoptosis, but the regulation of Bax translocation by UV irradiation remains elusive. In this study, we show that Bax translocation, caspase-3 activation and cell death by UV irradiation are not affected by Z-IETD-fmk (caspase-8 inhibitor), but delayed by Pifithrin- (p53 inhibitor), although Bid cleavage could be completely abolished by Z-IETD-fmk. Co-transfecting YFP-Bax and Bid-CFP into human lung adenocarcinoma cells, we demonstrate that translocation of YFP-Bax precedes that of Bid-CFP, there is no significant FRET (fluorescence resonance energy transfer) between them. Similar results are obtained in COS-7 cells expressing YFP-Bax and Bid-CFP. Furthermore, using acceptor photobleaching technique, we observe that there is no interaction between YFP-Bax and Bid-CFP in both healthy and apoptotic cells. Additionally, during UV-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Overexpression of Bcl-xL in cells susceptible to UV-induced apoptosis prevents Bax translocation and cell death, repression of Bid protein with siRNA (small interfering RNA) do not inhibit cell death by UV irradiation. Taken together, these data strongly suggest that Bax translocation by UV irradiation is a Bid-independent event and inhibited by overexpression of Bcl-xL.  相似文献   

20.
Tumor hypoxia interferes with the efficacy of chemotherapy, radiotherapy, and tumor necrosis factor-α. TRAIL (tumor necrosis factor-related apoptosis inducing ligand) is a potent apoptosis inducer that limits tumor growth without damaging normal cells and tissues in vivo. We present evidence for a central role of lysosomal cathepsins in hypoxia and/or TRAIL-induced cell death in oral squamous cell carcinoma (OSCC) cells. Hypoxia or TRAIL-induced activation of cathepsins (B, D and L), caspases (-3 and -9), Bid cleavage, release of Bax and cytochrome c, and DNA fragmentation were blocked independently by zVAD-fmk, CA074Me or pepstatin A, consistent with the involvement of lysosomal cathepsin B and D in cell death. Lysosome stability and mitochondrial membrane potential were reduced in hypoxia and TRAIL-induced apoptosis. However, TRAIL treatment under hypoxic condition resulted in diminished apoptosis rates compared to treatment under normoxia. This inhibitory effect of hypoxia on TRAIL-induced apoptosis may be based on preventing Bax activation and thus protecting mitochondria stability. Our data show that TRAIL or hypoxia independently triggered activation of cathepsin B and D leading to apoptosis through Bid and Bax, and suggest that hypoxic tissue regions provide a selective environment for highly apoptosis-resistant clonal cells. Molecular therapy approaches based on cathepsin inhibitors need to address this novel tumor-preventing function of cathepsins in OSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号