首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Smac/DIABLO is a mitochondrial protein that is released along with cytochrome c during apoptosis and promotes cytochrome c-dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs). We provide evidence that Smac/DIABLO functions at the levels of both the Apaf-1-caspase-9 apoptosome and effector caspases. The N terminus of Smac/DIABLO is absolutely required for its ability to interact with the baculovirus IAP repeat (BIR3) of XIAP and to promote cytochrome c-dependent caspase activation. However, it is less critical for its ability to interact with BIR1/BIR2 of XIAP and to promote the activity of the effector caspases. Consistent with the ability of Smac/DIABLO to function at the level of the effector caspases, expression of a cytosolic Smac/DIABLO in Type II cells allowed TRAIL to bypass Bcl-xL inhibition of death receptor-induced apoptosis. Combined, these data suggest that Smac/DIABLO plays a critical role in neutralizing IAP inhibition of the effector caspases in the death receptor pathway of Type II cells.  相似文献   

4.
We have reconstituted the Apaf-1-activated apoptosis mechanism in Sacchromyces cerevisiae such that the presence of a constitutively active form of Apaf-1 together with both Caspase-9 and Caspase-3 results in yeast death. This system is a good model of the Apaf-1-activated pathway in mammalian cells: MIHA (XIAP/hILP), and to a lesser degree MIHB (c-IAP1/HIAP2) and MIHC (c-IAP-2/HIAP1) can inhibit caspases in this system, and protection by IAPs (inhibitor of apoptosis) can be abrogated by coexpression of the Drosophila pro-apoptotic proteins HID and GRIM or the mammalian protein DIABLO/Smac. Using this system we demonstrate that unlike DIABLO/Smac, other proteins which interact with mammalian IAPs (TAB-1, Zap-1, Traf-1 and Traf-2) do not act to antagonise IAP- mediated caspase inhibition.  相似文献   

5.
TIP30 (Tat-interacting protein 30), a newly found proapoptotic factor, appears to be involved in multiple functions including metabolic suppression, apoptosis induction, and diminishing angiogenic properties. In the present study, we reported that mitochondrial events were required for apoptosis induced by TIP30 in hepatocellular carcinoma cells (HCC cells). Translocation of Bax was essential for TIP30-induced apoptosis, whereas overexpression of the anti-apoptotic protein Bcl-xL delayed both second mitochondria-derived activator of caspases (Smac/DIABLO) release and onset of apoptosis. Furthermore, TIP30-induced apoptosis was dependent on caspase activity because the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (z-VAD-fmk) blocked DNA fragmentation. Release of Smac/DIABLO from the mitochondria through the TIP30-P53-Bax cascade was required to remove the inhibitory effect of XIAP (X-linked Inhibitor of Apoptosis) and allowed apoptosis to proceed. Our results showed for the first time that Bax-dependent release of Smac/DIABLO, cytochrome c and AIF from the mitochondria mediated the contribution of the mitochondrial pathway to TIP30-mediated apoptosis. Our data suggested that adenovirus-mediated overexpression of TIP30 was capable of inducing therapeutic programmed cell death in vitro by activating the mitochondrial pathway of apoptosis. On the basis of these studies, elucidating the mechanism by which TIP30 induces cell death might establish it as an anticancer approach.  相似文献   

6.
During rat estrous cycle, the endometrium proliferates in response to sex steroids and specific endometrial epithelial cells undergo apoptosis in absence of embryonic factors. The central executioner of apoptosis is a family of aspartic acid-specific cysteine proteases known as caspases. Smac/DIABLO is released from the mitochondria during apoptosis and its stimulation promotes caspases activation by neutralizing members of the inhibitor of apoptosis proteins (IAPs) family, such as X-linked inhibitor of apoptosis protein (XIAP). The aim of this study was to investigate the involvement of Smac/DIABLO and XIAP in the control of caspases activation in endometrium of cycling rats. Polyoestrus female rats were sacrificed at each stage of estrous cycle (diestrus, proestrus, estrus, and metestrus). Endometrial protein extracts were collected to perform Western Blot analysis. Alternatively, uterine horns were sectioned for immunohistochemistry (IHC). We and others showed previously the presence of apoptosis at estrus in rat uterine epithelium. In the present study, cleaved caspase-3, -6, and -7 fragments were detected at estrus. IHC confirmed that caspase-3 was present only in luminal and glandular epithelium at estrus. XIAP was highly expressed at estrus in both epithelial and stromal cells. In contrast, expression of Smac/DIABLO was elevated at diestrus, proestrus and metestrus but was minimal at estrus. Treatment of ovariectomized rats with 17β-estradiol induced XIAP expression and inhibited Smac/DIABLO protein expression in the endometrium. Cleaved caspase-3, -6, and -7 fragments increased in endometrial protein extracts following 17β-estradiol treatment. Expression of NF-κB and IκB proteins, and IκB phosphorylation status were detected in the endometrium but were not influenced by the estrous cycle. These findings suggest that Smac/DIABLO and XIAP are regulated differently and may play important roles in the regulation of endometrial cell fate. Moreover, this study confirms a key role for executioner caspases in the control of apoptotic processes at estrus in the rat uterus.  相似文献   

7.
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.  相似文献   

8.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

9.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   

10.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

11.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:2,自引:0,他引:2  
为探讨Smac/DIABLO在过氧化氢 (H2 O2 )所致C2 C12 肌原细胞凋亡中的作用 ,采用Hoechst 3 3 2 58染色 ,观察H2 O2 (0 5mmol/L)处理C2 C12 肌原细胞不同时间后 ,细胞核形态学改变并计算凋亡核百分率 ,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带 ,利用细胞成分分离后蛋白质印迹分析H2 O2 是否导致Smac/DIABLO从线粒体释放 ,采用Caspase检测试剂盒及蛋白质印迹分析Caspase 3和Caspase 9的活化 ,转染Smac/DIABLO基因 ,观察Smac/DIABLO过表达对H2 O2 所致的C2 C12 肌原细胞凋亡的影响 .结果表明 :H2 O2 处理 1h后 ,Smac/DIABLO从C2 C12 肌原细胞线粒体释放入胞浆 ,2h更明显 ;H2 O2 处理 4h后 ,Caspase 3和Caspase 9活化 ,12h达高峰 ;H2 O2 处理 2 4h后 ,C2 C12 肌原细胞显示特征性的凋亡形态改变 ,凋亡核百分率明显升高 ,DNA电泳出现明显“梯状”条带 .与单纯过氧化氢损伤组相比 ,Smac/DIABLO高表达的C2 C12 肌原细胞经过氧化氢损伤组的Caspase 3和Caspase 9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显 .结果表明 ,H2 O2 可导致Smac/DIABLO从C2 C12 肌原细胞线粒体释放 ,促进Caspase 9和Caspase 3的活化而促进细胞凋亡的发生  相似文献   

12.
We investigated the expression of XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac/DIABLO, a newly identified mitochondrial apoptogenig molecule in the hippocampus following transient global ischemia. Transient global ischemia produced by two-vessel occlusion triggers the delayed neuronal death of CA1 neurons in the hippocampus. We demonstrate that CA1 neuronal loss induced by ischemia (10 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. XIAP (X chromosome-linked inhibitor of apoptosis protein) is a member of the inhibitor of apoptosis (IAP) gene family that, in addition to suppressing cell death by inhibition of caspases, is involved in an increasing number of signalling cascades. The present study shows alterations in the levels of XIAP and of Smac/DIABLO (second mitochondrial activator of caspase) after cerebral ischemia. The protein levels of XIAP and the number of XIAP-positive cells were regulated by cerebral ischemia in a strictly time and region dependent manner. The largest change in XIAP-IR was observed in the CA1 sub field, which is the most vulnerable area of hippocampus. The mitochondrial expression level of Smac/DIABLO increased during reperfusion. Smac/DIABLO expression was associated with alteration of the XIAP levels and the appearance of activated form of caspase-3 within the hippocampus during reperfusion in spatial and temporal manners.  相似文献   

13.
DIABLO/Smac is a mitochondrial protein that can promote apoptosis by promoting the release and activation of caspases. To do so, DIABLO/Smac must first be processed by a mitochondrial protease and then released into the cytosol, and we show this in an intact cellular system. We propose that the precursor form of DIABLO/Smac enters the mitochondria through a stop-transfer pathway and is processed to its active form by the inner membrane peptidase (IMP) complex. Catalytic subunits of the mammalian IMP complex were identified based on sequence conservation and functional complementation, and the novel sequence motif RX(5)P in Imp1 and NX(5)S in Imp2 distinguish the two catalytic subunits. DIABLO/Smac is one of only a few specific proteins identified as substrates for the IMP complex in the mitochondrial intermembrane space.  相似文献   

14.
To investigate the mechanism by which fibroblast growth factor 2 (FGF-2) inhibits apoptosis in the human small cell lung cancer cell line H446 subjected to serum starvation, apoptosis was evaluated by flow cytometry, Hoechst 33258 staining, caspase-3 activity, and DNA fragmentation. Survivin expression induced by FGF-2 and protein kinase Cα (PKCα) translocation was detected by subcellular frac-tionation and Western blot analysis. In addition, FGF-2-in-duced release of Smac from mitochondria to the cytoplasm was analyzed by Western blotting and immunofluorescence. FGF-2 reduced apoptosis induced by serum starvation and up-regulated survivin expression in H446 cells in a dose-dependent andtime-dependentmanner, andinhibitedcaspase-3 activity. FGF-2 also inhibited the release of Smac from mitochondria to the cytoplasm induced by serum starvation and increased PKCα translocation from the cytoplasm to the cell membrane. In addition, PKC inhibitor inhibited the expression of survivin. FGF-2 up-regulates the expression of survivin protein in H446 cells and blocks the release of Smac from mitochondria to the cytoplasm. PKCα regulated FGF-2-induced survivin expression. Thus, survivin, Smac, and PKCα might play important roles in the inhibition of apoptosis by FGF-2 in human small cell lung cancer cells.  相似文献   

15.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

16.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family. Survivin has been reported to be expressed in many cancers, but not in differentiated normal tissue. Recent studies revealed that survivin correlated with the chemo-resitance of cancer cells. In the present study, the changes in expression levels of survivin messenger RNA (mRNA) and survivin protein in a gastric cancer cell line (MKN-45) during cisplatin (CDDP) treatment were analyzed and compared with the occurrence of apoptotic cell death. Cell growth was inhibited even with a low dose CDDP (0.1 or 1 g/ml) 1 hr treatment. However, the percentage of apoptotic cells did not change after 48 hr incubation with low dose CDDP. Only with high dose CDDP (10 g/ml), did the percentage of apoptotic cells explosively increase between 12 and 24 hr treatment. Relative expression levels of survivin mRNA and survivin protein increased after CDDP treatment. The cell expression rates of survivin mRNA after 48 hr treatment with 0.1 and 1 g/ml of CDDP were 2 to 6 fold higher than that of the survivin mRNA of untreated cells. Also, the relative cell expression level of survivin protein after 24 hr treatment with 0.1 or 1 g/ml of CDDP was 3 to 6.5 fold higher than that of the survivin protein of untreated cells. These results indicate that survivin expression may correlate with the chemo-resistance of malignant cells.  相似文献   

17.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

18.
19.
Apoptotic cell death is characterized by the activation of the apoptotic signal transduction pathway on one hand and a number of regularly found morphological and biochemical features, such as nuclear condensation and mitochondrial depolarisation. Although much of our knowledge of apoptosis was obtained using noxious stimuli in cell culture, these apoptotic stimuli are likely to have numerous off-target effects that may contribute to or obscure the immediate effects of the apoptotic pathway. We have developed a cellular model where mitochondrial apoptosis is directly triggered by the tetracycline-regulated expression of the pro-apoptotic BH3-only protein BimS. We report the comparison of BimS-induced apoptosis with the commonly used apoptotic stimuli staurosporine and UV-light. While the release of mitochondrial cytochrome c and Smac/DIABLO, activation of caspases and nuclear morphological changes occurred with very similar kinetics, striking differences were found in other apoptotic assays. In particular, drop in mitochondrial membrane potential, loss of plasma membrane integrity and the appearance of sub-G1 nuclei were strongly reduced in cells dying upon BimS-induction, compared to staurosporine- or UV-induced apoptosis. The results thus indicate that the link between the apoptotic pathway and commonly used indicators of apoptosis is less tight than it appears from experiments with cytotoxic stimuli.  相似文献   

20.
The Inhibitor of Apoptosis Protein family (IAP) functions as inhibitors of apoptotic pathways, both death receptor- and mitochondrial mediated. We detail the current body of knowledge for the IAP family with regard to their structure and function, their expression in normal and leukemic cells, and their prognostic importance in acute leukemia. Although there is some evidence that IAPs play an important role in the chemoresistance of leukemia cell lines, little is known about their influence on this phenomenon in acute leukemia cells of human origin. IAPs are also explored as a specific target for new antitumor strategies, including antisense oligonucleotides of XIAP (X-chromosome-linked IAP) or survivin and small molecules of polyphenylurea-based XIAP inhibitors. Several proteins negatively regulate the function of the IAP family. One of those antagonists is Smac/DIABLO. Short peptides of Smac were found to enhanced apoptosis, induced by chemo- or immunotherapy, in the leukemic cells in vitro. Moreover, small-molecule agents, resembling Smac/DIABLO in function, were shown to potentiate cytotoxicity of chemotherapy in different malignancies. IAPs, exhibiting downstream influence on both external and intrinsic pathways as well as on some caspase-independent mechanisms of apoptosis, are potentially attractive target for anti-tumor therapy, although their role in the pathology and prognosis of acute leukemia has to be further elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号