首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary A lipase from Candida rugosa immobilized on styrene-divinylbenzene copolymer was used to catalyse the direct esterification of butanol and butyric acid. A factorial design was employed to evaluate the effects of temperature (37–50 °C), substrate molar ratio of butyric acid to butanol (0.6 to 2.0) and enzyme amount (0.2–0.4 g) on the ester yield. The main effects were fitted by multiple regression analysis to a linear model and maximum ester yield could be obtained working at 41 °C with 0.4 g of lipase. The mathematical model obtained, representing the ester yield has been found to describe adequately the experimental results. Under optimal conditions, concentration of 32.4 g butyl butyrate/l that corresponds to a yield of 75% was obtained.  相似文献   

2.
Aspergillus niger with mycelium-bound tannase activity was employed to investigate the synthesis of propyl gallate from gallic acid and 1-propanol in organic solvents. The effects of various organic solvents (log P: −1.0 to 6.6) on the enzymatic reactions showed that benzene (log P: 2.0) was the most suitable solvent. The water content and protonation state of mycelium-bound enzyme both had significant effects on the activity of tannase. The maximum molar conversion (65%) was achieved with 7.3% (v/v) 1-propanol and 5.56 mM gallic acid at stirring speeds of 200 rev/min, 40 °C in presence of anhydrous sodium sulfate and PEG-10,000. Enzyme specificity for the alcohol portion (C1–C8) of the ester showed that the optimum synthesis was observed with alcohols ranging from C3 to C5.  相似文献   

3.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

4.
Immobilized Candida antarctica lipase B, Novozym® 435, was used in the esterification of adipic acid and alcohols with different chain lengths (C1–C18). Optimum conditions for the synthesis of adipate esters were obtained using response surface methodology (RSM) with respect to important reaction parameters including time, temperature, substrate molar ratio and amount of enzyme. Alcohol chain length specificity of the enzyme in the synthesis of adipate esters was also determined. Minimum reaction time (215 min) for achieving maximum ester yield was obtained for butyl alcohol. Methanol required an increased time (358 min) and enzyme amount (10.2%, w/w) for attaining maximum yield. The maximum required temperature and time of 65°C and 523 min, respectively, were obtained for the synthesis of dioctadecyl adipate. The results demonstrate that alcohol chain length is a determining parameter in optimization of the lipase-catalyzed synthesis of adipate esters. Reactions under optimized conditions yielded a high percentage of esterification (>97%). The optimum conditions can be used to scale up the process.  相似文献   

5.
This work reports the optimization of 2-ethylhexyl palmitate production by esterification reaction in a solvent-free system using a commercial lipase as catalyst. For this, a sequential strategy was performed applying three experimental designs. An empirical model was built so as to assess the effects of process variables on the reaction conversion. Afterward, the operating conditions that optimized 2-ethylhexyl palmitate production were determined to be acid to alcohol molar ratio of 1:5.5, 70 °C, 150 rpm and 10.5 wt% of enzyme, leading to a reaction conversion as high as 93%. From this point, a kinetic study was carried out evaluating the influence of acid to alcohol molar ratio, enzyme concentration and temperature on product yield. Results obtained in this step allow to conclude that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt%) and temperature of 70 °C led to nearly complete reaction conversion.  相似文献   

6.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

7.
This work investigated the influence of temperature, enzyme concentration, substrates molar ratio, in the absence and presence of organic solvent, at two molar ratios of the substrates on the enzymatic production of linalil esters using the immobilized lipase Novozym 435 as catalyst, different acids and linalool and Ho-Sho essential oil as substrates. The best reaction conversion was obtained at the highest temperature (70 °C), for both solvent free (3.81%) and with solvent addition (2.25%), for a solvent to substrates molar ratio of 2:1, enzyme concentration of 5 wt% and acid to alcohol molar ratio of 1:1. The reaction kinetics revealed that Ho-Sho essential oil afforded the greatest conversions when compared with pure linalool. Higher linalil esters production were achieved after 10 h reaction (5.58%) in 2:1 solvent to substrates molar ratio, with enzyme concentration of 5 wt%, at 70 °C and anhydride to alcohol molar ratio of 1:1 using Ho-Sho essential oil as substrate.  相似文献   

8.
Lipase-catalyzed caffeic acid phenethyl ester (CAPE) synthesis in ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf2N]), was investigated in this study. The effects of several reaction conditions, including reaction time, reaction temperature, substrate molar ratio of phenethyl alcohol to caffeic acid (CA), and weight ratio of enzyme to CA, on CAPE yield were examined. In a single parameter study, the highest CAPE yield in [Emim][Tf2N] was obtained at 70 °C with a substrate molar ratio of 30:1 and weight ratio of enzyme to CA of 15:1. Based on these results, response surface methodology (RSM) with a 3-level-4-factor central composite rotatable design (CCRD) was adopted to evaluate enzymatic synthesis of CAPE in [Emim][Tf2N]. The four major factors were reaction time (36–60 h), reaction temperature (65–75 °C), substrate molar ratio of phenethyl alcohol to CA (20:1–40:1), and weight ratio of enzyme to CA (10:1–20:1). A quadratic equation model was used to analyze the experimental data at a 95 % confidence level (p < 0.05). A maximum conversion yield of 99.8 % was obtained under the optimized reaction conditions [60 h, 73.7 °C, substrate molar ratio of phenethyl alcohol to CA (27.1:1), and weight ratio of enzyme to CA (17.8:1)] established by our statistical method, whereas the experimental conversion yield was 96.6 ± 2 %.  相似文献   

9.
Commercial available lipases viz. Lipozyme™, Novozyme-735 and Candida antartica lipase-B (CAL-B) were immobilized on seven different supports by simple adsorption process. The importance of suitable enzyme–support combination in esterification of lauric acid and iso-propanol was validated experimentally. Effect of long chain fatty acids (C4–C18) and small chain monohydric alcohols (C1–C6) on specific activities of different immobilized lipases were evaluated. Lauric acid (C12) was found to be the most preferred fatty acid and t-amyl alcohol (C5) being the best alcohol. CAL-B adsorbed on Lewatit was the most efficient immobilized enzyme for esterification reaction. Selectivity constant for lauric acid (3.4) was the highest among all fatty acids tested, whereas there was not much difference in selectivity between different alcohols. Furthermore, increase in fatty acid unsaturation leads to decrease catalytic efficiency of immobilized CAL-B. The optimum conditions for t-amyllaurate synthesis were as follows: lauric acid—0.5 M, t-amyl alcohol—0.3 M and amount of immobilized enzyme—150 mg. Finally, CAL-B adsorbed on Lewatit was reused for three consecutive cycles.  相似文献   

10.
A mild and efficient method for the conversion of fatty acid methyl esters from lard into ascorbyl esters via lipase-catalyzed transesterification in co-solvent mixture is described. A solvent engineering strategy was firstly applied to improve fatty acid ascorbyl esters production. The co-solvent mixture of 30% t-pentanol:70% isooctane (v/v) was optimal. Response surface methodology (RSM) and central composite design (CCD) were employed to estimate the effects of reaction parameters, such as reaction time (12–36 h), temperature (45–65 °C), enzyme amount (10–20%, w/w, of fat acid methyl esters), and substrate molar ratio of fatty acid methyl esters to ascorbic acid (8:1–12:1) for the synthesis of fatty acid ascorbyl esters in co-solvent mixture. Based on the RSM analysis, the optimal reaction conditions were determined as follows: reaction time 34.32 h, temperature 54.6 °C, enzyme amount 12.5%, substrate molar ratio 10.22:1 and the maximum conversion of fatty acid ascorbyl esters was 69.18%. The method proved to be applicable for the synthesis of ascorbyl esters using Novozym 435 in solvent.  相似文献   

11.
Gao WL  Li N  Zong MH 《Biotechnology letters》2011,33(11):2233-2240
Regioselective undecylenoylation of purine nucleosides as potential dual prodrugs was achieved by Candida antarctica lipase B using adenosine as a model reactant. The optimum organic solvent, molar ratio of vinyl ester to nucleoside, enzyme dosage, reaction temperature and molecular sieve amount were anhydrous THF, 5:1, 20 U/ml, 45°C and 75 mg/ml, respectively. Under the optimum conditions, the initial reaction rate, yield and 5′-regioselectivity were 1.1 mM/h, 90% and >99%, respectively. The enzymatic acylation of various nucleosides furnished the desired 5′-ester derivatives with the yields of 60–95% and 5′-regioselectivities of >99%. In addition, the lipase displayed excellent operational stability in THF, and retained 96% of its initial activity after reused for five batches.  相似文献   

12.
Short chain alkyl esters are well appreciated for fruity flavors they provide. These are mainly applied to the fruit-flavored products like jam, jelly, beverages, wine and dairy. Cutinase from Burkholderia cepacia NRRL B 2320 was found to be active in catalyzing the synthesis of alkyl esters in organic solvent. The optimal temperature range for the enzyme catalyzed synthesis was found to be from 35 °C to 40 °C. The maximum conversion (%) during synthesis of ester was obtained for butyric acid (C4) and valeric acid (C5) with butanol reflecting the specificity of the enzyme for short-chain length fatty acids. In case of alcohol specificity, butanol was found to be most preferred substrate by the enzyme and conversion (%) decreased with increasing carbon chain length of alcohol used in the esterification reaction. The kinetic analysis for the synthesis of butyl butyrate by varying concentration of one substrate at a time (butanol or butyric acid), showed that Ping–Pong Bi Bi model with acid inhibition and influence of initial water is most suitable model for the prediction of the reaction kinetics.  相似文献   

13.
This study reports the maximization of geranyl oleate production by esterification of geraniol and oleic acid in a solvent-free system using a commercial lipase as catalyst. The operating conditions that maximized geranyl oleate production were determined to be 40 °C, geraniol to oleic acid molar ratio of 5:1, 150 rpm and 10 wt% of enzyme, with a resulting reaction conversion of about 93%. After determining the best reaction parameters, a kinetic study was performed and the results obtained in this step allow to conclude that an excess of alcohol (alcohol to acid molar ratio of 5:1), relatively low enzyme concentration (5 wt%) and temperature of 50 °C afforded nearly complete reaction conversion after 1 h of reaction. New experimental data on enzymatic esterification of geraniol and oleic acid for geranyl oleate production are reported in this work, showing a promising perspective of the technique to overcome the inconvenience of the chemical-catalyzed route.  相似文献   

14.
Abstract

Immobilized Candida antarctica lipase, Novozym 435, was used to catalyze the esterification reaction between betulinic acid and phthalic anhydride to synthesize 3-O-phthalyl betulinic acid in n-hexane/chloroform. Response surface methodology based on a five-level, four-variable central composite rotatable design was employed to evaluate the effects of synthesis parameters such as reaction time, reaction temperature, enzyme amount and substrate molar ratio on the yield of ester. Based on the response surface model, the optimal enzymatic synthesis conditions were predicted to be: reaction time 20.3 h, reaction temperature 53.9°C, enzyme amount 145.6 mg, betulinic acid to phthalic anhydride molar ratio 1:1.11. The predicted yield was 65.8% and the actual yield was 64.7%.  相似文献   

15.
(Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Effects of various process conditions on (Z)-3-hexen-1-yl caproate synthesis employing germinated rapeseed lipase acetone powder in organic solvent were investigated. Rapeseed lipase catalyzed ester formation more efficiently with non-polar compared to polar solvents despite high enzyme stability in both types of solvents. Maximum ester yield (90%) was obtained when 0.125 M (Z)-3-hexen-1-ol and caproic acid were reacted at 25 °C for 48 h in the presence of 50 g/L enzyme in heptane. Enzyme showed little sensitivity towards aw with optimum yield at 0.45, while added water did not affect ester yield. Esterification reduced by increasing molecular sieves (>0.0125%, w/v). The highest yields of caproic acid were obtained with isoamyl alcohol (93%) followed by butanol and (Z)-3-hexen-1-o1 (88%) respectively reflecting the enzyme specificity for straight and branched chain alcohols. Secondary alcohols showed low reactivity, while tertiary alcohol had either very low reactivity or not esterified at all. A good relationship has been found between ester synthesis and the solvent polarity (log P value); while no correlation for the effect of solvents on residual enzyme activity was observed. It may be concluded that germinated rapeseed lipase is a promising biocatalyst for the synthesis of valuable green flavor note compound. The enzyme also showed a wide range of temperature stability (5–50 °C).  相似文献   

16.
Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.  相似文献   

17.
The synthesis of wax ester using refined, bleached and deodorized (RBD) palm oil and oleyl alcohol catalyzed by lipozyme IM was carried out. Response surface methodology (RSM) based on a five-level, four-variable central composite rotatable design (CCRD) was used to evaluate the interactive effects of synthesis, of reaction time (2.5–10 h), temperature (30–70 °C), amount of enzyme (0.1–0.2 g) and substrate molar ratio (palm oil to oleyl alcohol, 1:1–1:5) on the percentage yield of wax esters. The optimum conditions derived via RSM were: reaction time 7.38 h, temperature 53.9 °C, amount of enzyme 0.149 g, and substrate molar ratio 1:3.41. The actual experimental yield was 84.6% under optimum condition, which compared well to the maximum predicted value of 85.4%.  相似文献   

18.
《Process Biochemistry》2007,42(9):1362-1366
Hexyl laurate, a medium-chain ester carried about fruity flavor, is primarily used in personal care formulations as an important emollient for cosmetic applications. On the basis of the hexyl laurate could be successfully synthesized by lipase within a batch system in our previous report. This study aimed to develop an optimal continuous procedure of lipase-catalyzed hexyl laurate synthesis in a packed-bed bioreactor to investigate the possibility of large-scale production further. The ability of lipase from Rhizomucor miehei (Lipozyme IM-77) to catalyze the direct-esterification of 1-hexanol and lauric acid in n-hexane was investigated. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (35–55 °C), mixture flow rate (1.5–4.5 mL/min) and substrate molar ratio 1-hexanol to lauric acid (1:1–1:3) on production rate (μmol/min) of hexyl laurate by direct-esterification. Based on the analysis of ridge max, the optimum synthesis conditions for hexyl laurate were as follows: 45 °C of reaction temperature, substrate molar ratio 1:2 and reaction flow rate 4.5 mL/min. The optimum predicted production rate was 435.6 ± 0.9 μmol/min and the actual value was 437.6 ± 0.4 μmol/min.  相似文献   

19.
In this study, benzyl benzoate was successfully synthesized via enzymatic acylation using three immobilized enzymes as biocatalysts. Different acyl donors (benzoic acid and benzoic anhydride), operation regimes (batch, fed-batch), mixing modes (conventional mechanical stirring and ultrasound), process parameters (temperature, substrate molar ratio of acyl donor to acyl acceptor), presence or absence of solvents, enzyme amount and type were evaluated. Benzoic acid is a solid that is difficult to solubilize and, thus, was not efficient as acyl donor for the synthesis of benzyl benzoate. On the other hand, benzoic anhydride was very effective for the acylation of benzyl benzoate, and the presence of an excess of benzyl alcohol was essential to ensure the solute-solvent intermolecular attractions and good substrate solubilization, allowing the ester synthesis to be performed in the absence of organic solvents. The ultrasound was effective in increasing increase the initial reaction rate and the final conversion (88 %). However, the Lipozyme TL-IM and RM-IM supports were damaged, and the reuse was unfeasible. The batch and fed-batch approaches in conventional stirring ensured high conversions of 92 and 90 %, respectively, for batch (anhydride: alcohol 1:6) and fed-batch (1:3) using the Lipozyme TL-IM as biocatalyst. The controlled addition of the anhydride (fed-batch) allowed the reduction of alcohol molar ratio but decreased the reaction rates, and the maximum conversions were reached only after 24 h, while the batch approach had 92 % of conversion after 6 h. The yield of benzyl benzoate was high at 6 wt.% of enzyme, low temperature (50 °C), and simple reactor operation (batch). Results show the feasibility of the synthesis of benzyl benzoate via acylation using a green process that may be an alternative route to the chemical synthesis.  相似文献   

20.
People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87–3.14 clo at 5°C(Jan/Feb), 1.62–2.63 clo at 14°C(Mar/Apr), 0.87–1.59 clo at 25°C(May/Jun), 0.4–1.01 clo at 29°C(Jul/Aug), 0.92–1.81 clo at 23°C (Sept/Oct), and 2.12–3.09 clo at 8°C(Nov/Dec) for females, and 1.84–2.90 clo at 5°C, 1.52–1.98 clo at 14°C, 1.04–1.23 clo at 25°C, 0.51–1.30 clo at 29°C, 0.82–1.45 clo at 23°C and 1.96–3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号