共查询到20条相似文献,搜索用时 8 毫秒
1.
Lio YC Mazin AV Kowalczykowski SC Chen DJ 《The Journal of biological chemistry》2003,278(4):2469-2478
The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway. 相似文献
2.
Cui X Zhang J Du R Wang L Archacki S Zhang Y Yuan M Ke T Li H Li D Li C Li DW Tang Z Yin Z Liu M 《Biochimica et biophysica acta》2012,1822(8):1308-1315
Heat shock factor protein 4 (HSF4) is expressed exclusively in the ocular lens and plays a critical role in the lens formation and differentiation. Mutations in the HSF4 gene lead to congenital and senile cataract. However, the molecular mechanisms causing this disease have not been well characterized. DNA damage in lens is a crucial risk factor in senile cataract formation, and its timely repair is essential for maintaining the lens' transparency. Our study firstly found evidence that HSF4 contributes to the repair of DNA strand breaks. Yet, this does not occur with cataract causative mutations in HSF4. We verify that DNA damage repair is mediated by the binding of HSF4 to a heat shock element in the Rad51 promoter, a gene which assists in the homologous recombination (HR) repair of DNA strand breaks. HSF4 up-regulates Rad51 expression while mutations in HSF4 fail, and DNA does not get repaired. Camptothecin, which interrupts the regulation of Rad51 by HSF4, also affects DNA damage repair. Additionally, with HSF4 knockdown in the lens of Zebrafish, DNA damage was observed and the protein level of Rad51 was significantly lower. Our study presents the first evidence demonstrating that HSF4 plays a role in DNA damage repair and may contribute a better understanding of congenital cataract formation. 相似文献
3.
Biochemical analysis has shown that mammalian Rad51 and Rad52 interact and synergize in DNA recombination reactions in vitro, but these proteins have not been shown to function together in response to DNA damage in vivo. By analysis of murine cells expressing murine Rad52 tagged with green fluorescent protein (GFP)–Rad52, we now show that DNA damage causes Rad51 and GFP–Rad52 to colocalize in distinct nuclear foci. Cells expressing GFP–Rad52 show both increased survival and an increased number of Rad51 foci, raising the possibility that Rad52 is limiting for repair. These observations provide evidence of coordinated function of Rad51 and Rad52 in vivo and support the hypothesis that Rad52 plays an important role in the DNA damage response in mammalian cells. 相似文献
4.
Cathryn E. Tambini Karen G. Spink Caroline J. Ross Mark A. Hill John Thacker 《DNA Repair》2010,9(5):517-525
The repair of DNA damage by homologous recombination (HR) is a key pathway for the maintenance of genetic stability in mammalian cells, especially during and following DNA replication. The central HR protein is RAD51, which ensures high fidelity DNA repair by facilitating strand exchange between damaged and undamaged homologous DNA segments. Several RAD51-like proteins, including XRCC2, appear to help with this process, but their roles are not well understood. Here we show that XRCC2 is highly conserved and that most substantial truncations of the protein destroy its ability to function. XRCC2 and its partner protein RAD51L3 are found to interact with RAD51 in the 2-hybrid system, and XRCC2 is shown to be important but not essential for the accumulation of RAD51 at the sites of DNA damage. We visualize the localization of XRCC2 protein at the same sites of DNA damage for the first time using specialized irradiation conditions. Our data indicate that an important function of XRCC2 is to enhance the activity of RAD51, so that the loss of XRCC2 results in a severe delay in the early response of RAD51 to DNA damage. 相似文献
5.
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes. 相似文献
6.
Bleuyard JY Gallego ME Savigny F White CI 《The Plant journal : for cell and molecular biology》2005,41(4):533-545
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair. 相似文献
7.
8.
Román González‐Prieto Ana M Muñoz‐Cabello María J Cabello‐Lobato Félix Prado 《The EMBO journal》2013,32(9):1307-1321
Homologous recombination (HR) is essential for genome integrity. Recombination proteins participate in tolerating DNA lesions that interfere with DNA replication, but can also generate toxic recombination intermediates and genetic instability when they are not properly regulated. Here, we have studied the role of the recombination proteins Rad51 and Rad52 at replication forks and replicative DNA lesions. We show that Rad52 loads Rad51 onto unperturbed replication forks, where they facilitate replication of alkylated DNA by non‐repair functions. The recruitment of Rad52 and Rad51 to chromatin during DNA replication is a prerequisite for the repair of the non‐DSB DNA lesions, presumably single‐stranded DNA gaps, which are generated during the replication of alkylated DNA. We also show that the repair of these lesions requires CDK1 and is not coupled to the fork but rather restricted to G2/M by the replicative checkpoint. We propose a new scenario for HR where Rad52 and Rad51 are recruited to the fork to promote DNA damage tolerance by distinct and cell cycle‐regulated replicative and repair functions. 相似文献
9.
10.
Rad51 accumulation at sites of DNA damage and in postreplicative chromatin 总被引:21,自引:0,他引:21 下载免费PDF全文
Rad51, a eukaryotic RecA homologue, plays a central role in homologous recombinational repair of DNA double-strand breaks (DSBs) in yeast and is conserved from yeast to human. Rad51 shows punctuate nuclear localization in human cells, called Rad51 foci, typically during the S phase (Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and N. Kamada. 1996. Oncogene. 12:2165-2170). However, the topological relationships that exist in human S phase nuclei between Rad51 foci and damaged chromatin have not been studied thus far. Here, we report on ultraviolet microirradiation experiments of small nuclear areas and on whole cell ultraviolet C (UVC) irradiation experiments performed with a human fibroblast cell line. Before UV irradiation, nuclear DNA was sensitized by the incorporation of halogenated thymidine analogues. These experiments demonstrate the redistribution of Rad51 to the selectively damaged, labeled chromatin. Rad51 recruitment takes place from Rad51 foci scattered throughout the nucleus of nonirradiated cells in S phase. We also demonstrate the preferential association of Rad51 foci with postreplicative chromatin in contrast to replicating chromatin using a double labeling procedure with halogenated thymidine analogues. This finding supports a role of Rad51 in recombinational repair processes of DNA damage present in postreplicative chromatin. 相似文献
11.
Rad51 is a crucial enzyme in DNA repair, mediating the strand invasion and strand exchange steps of homologous recombination (HR). Mutations in the Drosophila Rad51 gene (spn-A) disrupt somatic as well as meiotic double-strand break (DSB) repair, similar to fungal Rad51 genes. However, the sterility of spn-A mutant females prevented a thorough analysis of the role of Rad51 in meiosis. In this study, we generated transgenic animals that express spn-A dsRNA under control of an inducible promoter, and examined the effects of inhibiting expression of spn-A on DNA repair, meiotic recombination and meiotic chromosome pairing and segregation. We found that depletion of spn-A mRNA had no effect on the viability of non-mutagen-treated transgenic animals but greatly reduced the survival of larvae that were exposed to the radiomimetic drug MMS, in agreement with the MMS and X-ray sensitivity of spn-A mutant animals. We also found that increases in dose of spn-A gene enhanced larval resistance to MMS exposure, suggesting that at high damage levels, Rad51 protein levels may be limiting for DNA repair. spn-A RNAi strongly stimulated X-X nondisjunction and decreased recombination along the X in female meiosis, consistent with a requirement of Rad51 in meiotic recombination. However, neither RNAi directed against the spn-A mRNA nor homozygosity for a spn-A null mutation had any effect on male fertility or on X-Y segregation in male meiosis, indicating that Rad51 likely plays no role in male meiotic chromosome pairing. Our results support a central role for Rad51 in HR in both somatic and meiotic DSB repair, but indicate that Rad51 in Drosophila is dispensable for meiotic chromosome pairing. Our results also provide the first demonstration that RNAi can be used to inhibit the functions of meiotic genes in Drosophila. 相似文献
12.
Granzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA-mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster-deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects-facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single-stranded, not double-stranded, DNA damage, and GzmA-induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA-induced cell death, which are blocked when GzmA proteolyses Ku70. 相似文献
13.
Janapriya Saha Jinsung Bae Shih-Ya Wang Huiming Lu Lori
J Chappell Purva Gopal Anthony
J Davis 《Nucleic acids research》2021,49(17):9836
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC. 相似文献
14.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2023,1870(7):119526
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer. 相似文献
15.
Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage 总被引:4,自引:0,他引:4 下载免费PDF全文
Huang Y Nakada S Ishiko T Utsugisawa T Datta R Kharbanda S Yoshida K Talanian RV Weichselbaum R Kufe D Yuan ZM 《Molecular and cellular biology》1999,19(4):2986-2997
We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage. 相似文献
16.
17.
Osakabe K Abe K Yamanouchi H Takyuu T Yoshioka T Ito Y Kato T Tabata S Kurei S Yoshioka Y Machida Y Seki M Kobayashi M Shinozaki K Ichikawa H Toki S 《Plant molecular biology》2005,57(6):819-833
Rad51 paralogs belong to the Rad52 epistasis group of proteins and are involved in homologous recombination (HR), especially the assembly and stabilization of Rad51, which is a homolog of RecA in eukaryotes. We previously cloned and characterized two RAD51 paralogous genes in Arabidopsis, named AtRAD51C and AtXRCC3, which are considered the counterparts of human RAD51C and XRCC3, respectively. Here we describe the identification of RAD51B homologue in Arabidopsis, AtRAD51B. We found a higher expression of AtRAD51B in flower buds and roots. Expression of AtRAD51B was induced by genotoxic stresses such as ionizing irradiation and treatment with a cross-linking reagent, cisplatin. Yeast two-hybrid analysis showed that AtRad51B interacted with AtRad51C. We also found and characterized T-DNA insertion mutant lines. The mutant lines were devoid of AtRAD51B expression, viable and fertile. The mutants were moderately sensitive to γ-ray and hypersensitive to cisplatin. Our results suggest that AtRAD51B gene product is involved in the repair of double-strand DNA breaks (DSBs) via HRAccession numbers: AB194809 (AtRAD51Bα), AB194810 (AtRAD51Bβ), AB194811 (AtRAD51D). 相似文献
18.
Rad52 and Ku bind to different DNA structures produced early in double-strand break repair 总被引:1,自引:1,他引:1
DNA double-strand breaks are repaired by one of two main pathways, non-homologous end joining or homologous recombination. A competition for binding to DNA ends by Ku and Rad52, proteins required for non-homologous end joining and homologous recombination, respectively, has been proposed to determine the choice of repair pathway. In order to test this idea directly, we compared Ku and human Rad52 binding to different DNA substrates. How ever, we found no evidence that these proteins would compete for binding to the same broken DNA ends. Ku bound preferentially to DNA with free ends. Under the same conditions, Rad52 did not bind preferentially to DNA ends. Using a series of defined substrates we showed that it is single-stranded DNA and not DNA ends that were preferentially bound by Rad52. In addition, Rad52 aggregated DNA, bringing different single-stranded DNAs in close proximity. This activity was independent of the presence of DNA ends and of the ability of the single-stranded sequences to form extensive base pairs. Based on these DNA binding characteristics it is unlikely that Rad52 and Ku compete as ‘gatekeepers’ of different DNA double-strand break repair pathways. Rather, they interact with different DNA substrates produced early in DNA double-strand break repair. 相似文献
19.
Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. 总被引:12,自引:0,他引:12 下载免费PDF全文
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair. 相似文献