首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Time course of changes in cell morphology, cation content, lipid peroxidation and high energy phosphates was examined in isolated rat cardiac myocytes exposed to oxygen radicals for 0 to 20 min. Xanthine (2 mM) and xanthine oxidase (10 U/L) mixture was used as a source of oxygen radicals. A significant decrease in the number of rod-shape cells with a concomitant increase in the number of hypercontracted cells was observed within 5 min of exposure to xanthine-xanthine oxidase (x-xo). At 10,15 and 20 min of exposure to x-xo, there was a time-dependant increase in the number of round cells. Lipid peroxide content, as indicated by the thiobarbituric acid reactive material, was significantly and progressively increased between 10 to 20 min of perfusion with x-xo. In myocytes exposed to x-xo, Ca2+ and Na+ were increased by 15% and 45% at 15 min and by 55% and 100% at 20 min respectively. Levels of adenosine tri- and di- phosphates were significantly depressed and that of adenosine mono- phosphate were higher at 20 min. These data support the hypothesis that reactive oxygen intermediates can directly influence myocyte structure and function, but these changes seem to occur more slowly in isolated myocytes than in whole hearts.  相似文献   

2.
3.
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 +/- 0.013 vs. 0.31 +/- 0.008), HW/TL by 47.2% (42.7 +/- 1.30 vs. 29.0 +/- 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 +/- 0.006 vs. 0.44 +/- 0.013) and HW/TL by 22.3% (33.2 +/- 0.95 vs. 42.7 +/- 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-kappaB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo.  相似文献   

4.
During cardiac ischemia-reperfusion injury, reactive oxygen species (ROS) level is markedly increased, leading to oxidative stress and mitochondrial dysfunction. Although granulocyte-colony stimulating factor (G-CSF) is known to be cardioprotective, its effects on cardiac mitochondria during oxidative stress have never been investigated. In this study, we discovered that G-CSF completely prevented mitochondrial swelling and depolarization, and markedly reduced ROS production caused by H(2)O(2)-induced oxidative stress in isolated cardiac mitochondria. Its effects were similar to those treated with cyclosporine A and 4'-chlorodiazepam. These findings suggest that G-CSF could act directly on cardiac mitochondria to prevent mitochondrial dysfunction caused by oxidative stress.  相似文献   

5.
Salicylic acid is a widely used nonsteroidal anti-inflammatory drug (NSAID). But it is known to cause serious liver damage occasionally. Mitochondrial dysfunction and oxidative stress are predicted to be the major factors of salicylic acid-induced liver injury. We investigated the influence of salicylic acid on ATP contents, oxygen consumption and lipid peroxidation in the presence of the same concentration of salicylic acid. Leakage of lactate dehydrogenase (LDH) was significantly higher in the presence of 5 mM salicylic acid than in its absence. Salicylic acid-induced thiobarbituric acid-reactive substance (TBARS) formation and spontaneous chemiluminescence (CL) in rat hepatocytes, whereas antioxidants, such as promethazine (PMZ) and N,N-diphenylphenylenediamine (DPPD), suppressed both TBARS formation and LDH leakage. TBARS formation in rat liver microsomes was suppressed by diethyldithiocarbamate (a specific inhibitor of cytochrome P450 (CYP)2E1) and diclofenac (a specific inhibitor of CYP2C11). These results suggest that salicylic acid-induced lipid peroxidation was related to oxidative metabolism mediated by CYP2E1 and CYP2C11.On the other hand, 5 mM salicylic acid induced a drastic decrease of ATP contents in rat isolated hepatocytes. Furthermore, mitochondrial respiration control ratio (RC ratio), calculated by State 3/State 4 also decreased with the increase of salicylic acid concentration. These findings suggest that salicylic acid would trigger mitochondrial dysfunction and cause ATP decrease, leading to lethal liver cell injury by lipid peroxidation, although this hypothesis remains to be elucidated in vivo.  相似文献   

6.
The aim of this study was to evaluate the health benefits associated with apple consumption following cadmium exposure. A total of 15 Wistar rats were distributed into three groups (n = 5), as follows: control group (non-treated group, CTRL); cadmium group (Cd) and apple juice group (Cd + AJ). The results showed a decrease in the frequency micronucleated cells in bone marrow and hepatocytes in the group exposed to cadmium and treated with apple juice. Apple juice was also able to reduce the 8OHdG levels and to decrease genetic damage in liver and peripheral blood cells. Catalase (CAT) was decreased following apple juice intake. Taken together, our results demonstrate that apple juice seems to be able to prevent genotoxicity and oxidative stress induced by cadmium exposure in multiple organs of Wistar rats.  相似文献   

7.
The objective of this study was to evaluate the cardiac toxicity induced by carboplatin, a second generation platinum-containing anti-cancer drug, and to test whether pravastatin can reduce this cardio-toxicity. In the present study, infusion of carboplatin (100 mg/kg) to mice resulted in decreased survival rates and abnormal cardiac histology, concomitant with increased cardiac apoptosis. In addition, treatment of cultured rat cardiomyocytes with carboplatin (100 μM for 48 h) caused marked apoptosis and increased caspase-3, -9, and cytochrome C, but decreased BCL-XL protein expression, and this was inhibited by reactive oxygen species (ROS) scavenger n-acetylcysteine. Furthermore, pretreatment of cardiomyocytes with pravastatin (20 μM) before carboplatin exposure significantly attenuated apoptosis and decreased caspase-3, -9, cytochrome C activity. Lastly, mice pre-treated with pravastatin before carboplatin treatment showed improved survival rate and cardiac function, with reduced cardiomyocyte apoptosis via activating Akt and restoring normal mitochondrial HAX-1 in heart tissue. In summary, our results show that carboplatin can induce cardiotoxicity in vivo and in cultured cells via a mitochondrial pathway related to ROS production, whereas pravastatin administration can reduce such oxidative stress thus prevented cardiac apoptosis. Therefore, pravastatin can be used as a cytoprotective agent prior to carboplatin chemotherapy. Ching-Feng Cheng and Shu-Hui Juan contributed equally to the work.  相似文献   

8.
In view of the known involvement of oxidative stress and calcineurin (Ca2+-calmodulin dependent protein phosphatase) in β-Adrenergic stimulated events, we examined the influence of eugenol (an antioxidant generally regarded as safe by the Food and Agricultural Organization of the United Nations) on isoproterenol-induced apoptosis in neonatal cardiomyocytes. In comparison to unstimulated controls, cardiomyocytes stimulated with 50 μM isoproterenol for 48 h demonstrated (a) increased intracellular Ca2+ levels (b) oxidative stress involving enhanced reactive oxygen species, decreased GSH/GSSG ratio, enhanced lipid peroxidation, increased activities of superoxide dismutase and glutathione peroxidase (c) apoptosis, evidenced by increased number of annexin V/TUNEL positive cells, enhanced membrane fluidity, decreased mitochondrial membrane potential, increased activities of caspase 3 and 9 along with (d) increased calcineurin activity. Pre-incubation of cardiomyocytes with 100 μM eugenol for 1 h, followed by isoproterenol treatment for 48 h, led to reversal of enhanced intracellular Ca2+ levels, oxidative stress, calcineurin activation and apoptosis caused by isoproterenol. In addition, similar treatment of cardiomyocytes with 10 nM FK506, a calcineurin inhibitor, could also attenuate isoproterenol-induced apoptosis. These results indicate the beneficial effects of eugenol in preventing cardiomyocyte apoptosis.  相似文献   

9.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

10.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival. (Mol Cell Biochem 263: 35–53, 2004)  相似文献   

11.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival.  相似文献   

12.
IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress   总被引:4,自引:0,他引:4  
Insulin-like growth factor-1 (IGF-1) is a natural protectant of cardiac myocytes that has been shown to improve cardiac function. The role of IGF-1 in attenuating apoptosis induced by osmotic stress (sorbitol, SOR) or by other known apoptotic stimuli (doxorubicin, angiotensin II, and serum withdrawal) was determined in cultured cardiac myocytes. After 6 h of exposure to SOR, apoptosis was initiated, concomitant with a decrease in cell survival and increases in poly-[ADP-ribose] polymerase (PARP) degradation and DNA fragmentation. These effects were maximal after 24 h. IGF-1 partially attenuated apoptosis induced by sorbitol but not that induced by angiotensin II, doxorubicin, or serum withdrawal. In cells preincubated with IGF-1 before the addition of SOR, we detected an increase in the number of viable cells, a decrease in the generation of DNA fragments on agarose gel electrophoresis and in the percentage of positive TUNEL cells, and a reduction on PARP levels. These results suggest that IGF-1 prevents apoptosis induced by osmotic stress in cardiac myocytes but not apoptosis induced by doxorubicin and angiotensin II.  相似文献   

13.
Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.  相似文献   

14.
Xiao  Xiaolan  Sun  Shuangxi  Li  Yingbin  Cen  Xuecheng  Wu  Shibiao  Lu  Aili  Cai  Jun  Zhao  Junjie  Li  Shaoxue 《Molecular biology reports》2022,49(7):6303-6311
Molecular Biology Reports - Oxidative stress and neurocyte apoptosis are crucial pathophysiological process in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Geniposide (GNP) has...  相似文献   

15.
It is known that TNF-alpha increases the production of ROS and decreases antioxidant enzymes, resulting in an increase in oxidative stress. IL-10 appears to modulate these effects. The present study investigated the role of p38 and ERK1/2 MAPKs in mediating the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis in Sprague-Dawley male rats. Isolated adult cardiac myocytes were exposed to TNF-alpha (10 ng/ml), IL-10 (10 ng/ml), and IL-10 + TNF-alpha (ratio 1) for 4 h. H(2)O(2) (100 microM) as a positive control and the antioxidant Trolox (20 micromol/l) were used to confirm the involvement of oxidative stress. H(2)O(2) treatment increased oxidative stress and apoptosis; TNF-alpha mimicked these effects. Exposure to TNF-alpha significantly increased ROS production, caused cell injury, and increased the number of apoptotic cells and Bax-to-Bcl-xl ratio. This change was associated with an increase in the phospho-p38 MAPK-to-total p38 MAPK ratio and a decrease in the phospho-ERK1/2-to-total ERK1/2 ratio. IL-10 treatment by itself had no effect on these parameters, but it prevented the above-listed changes caused by TNF-alpha. The antioxidant Trolox modulated TNF-alpha-induced changes in Bax/Bcl-xl, cell injury, and MAPKs. Preexposure of cells to the p38 MAPK inhibitor SB-203580 prevented TNF-alpha-induced changes. Inhibition of the ERK pathway with PD-98059 attenuated the protective role of IL-10 against TNF-alpha-induced apoptosis. This study provides evidence in support of the essential role of p38 and ERK1/2 MAPKs in the interactive role of TNF-alpha and IL-10 in cardiac myocyte apoptosis.  相似文献   

16.
Diabetes aggravates the clinical severity and represents an additional independent risk factor of hypertension. Since both diseases separately concur to cardiomyocyte apoptosis, a mechanism at least partly involving unbalanced oxidative stress, we investigated whether the combination of diabetes and hypertension potentiated cardiac cell death in experimental models, compared to either disease alone. We also evaluated the short-term effects of different drugs in these models. Streptozotocin-induced diabetic normotensive (WKY) or hypertensive (SHR) rats were treated for one week with a DA(2)/alpha(2) agonist (CHF-1024), a selective beta1 adrenergic blocker (metoprolol), an angiotensin II-receptor blocker (valsartan) or a radical scavenger (tempol). In separate experiments, isolated cardiomyocytes were cultured in high glucose medium (25 mM) containing the same drugs. Although the number of apoptotic cardiomyocytes and the myocardial density of oxygen radicals were higher in non diabetic hypertensive than in normotensive controls, diabetes raised these variables to comparable absolute levels in both strains. All drugs except metoprolol significantly reduced apoptosis and oxidative stress in the diabetic animals of both strains and in the isolated myocytes cultured with high glucose. In conclusion, hypertensive rat is no more susceptible than its normotensive control to acute apoptosis induced by diabetes. Oxidative stress might be considered the common trigger for cardiac myocyte apoptosis in both conditions.  相似文献   

17.
Recent studies show that Thioredoxin (Trx) possesses a neuronal protective effect and that Trx inactivation is closely related to cerebral ischemia injury. Peroxynitrite (ONOO) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in cerebral ischemia. The present study was conducted to validate whether treatment with recombinant human Trx-1 (rhTrx-1) would attenuate ONOO generation and oxidative/nitrative stress in focal transient cerebral ischemia. The results showed that intravenously administered rhTrx-1 (10 mg/kg) significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death following cerebral ischemia. Neuronal ONOO formation was significantly attenuated after rhTrx-1 treatment. Moreover, rhTrx-1 resulted in a significant decrease in antioxidant capacity and p38 mitogen activated protein kinase (MAPK) activity in ischemic brain tissue. Furthermore, the suppression on ONOO formation by either rhTrx-1 or an ONOO scavenger uric acid reduced cerebral infarct size in mice subjected to cerebral ischemia. Peroxynitrite donor SIN-1 not only blocked the neuronal protection of rhTrx-1 but also markedly attenuated rhTrx-1-induced antioxidative/antinitrative effect. We concluded that rhTrx-1 exerts an antioxidative/antinitrative effect against cerebral ischemia injury by blocking ONOO and superoxide anion formation. These results provide the information that thioredoxin is much more likely to succeed as a therapeutic approach to diminish oxidative/nitrative stress-induced neuronal apoptotic cell death in the ischemic brain.  相似文献   

18.
In this study, we determined the efficacy of minocycline, a second generation tetracycline, in preventing male germ cell apoptosis after withdrawal of gonadotropins and intratesticular testosterone (T). Groups of 5 male rats received one of the following treatments daily for 5 days: (i) daily sc injection of GnRH-A (1.6 mg/kg BW), (ii) oral administration of 30% gum acacia as a vehicle control, and (iii) GnRH-A + oral administration of 50 or 100 mg/kg BW of minocycline. Minocycline at both 50 and 100 mg dose levels significantly (P < 0.05) prevented GnRH-A -induced germ cell apoptosis by 59.4% and 62.2%, respectively, and fully prevented PARP cleavage. Minocycline-mediated protection occurred at the mitochondria, involving the restoration of the BCL-2 levels and, in turn, suppression of cytochrome c and DIABLO release. Minocycline was also effective in preventing human male germ cell apoptosis induced by hormone free culture condition.  相似文献   

19.
Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor   总被引:8,自引:0,他引:8  
Suzuki YJ  Evans T 《Life sciences》2004,74(15):1829-1838
  相似文献   

20.
Abstract

We have previously shown that inhibition of catalase and glutathione peroxidase activities in rat primary hepatocytes by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS) results in sustained oxidative stress, followed by apoptosis. To examine the effects of duration of oxidative stress, ATZ and MS were removed from culture medium at 3, 6 and 9 h after treatment with both inhibitors. Oxidative stress was induced for periods of time by ATZ and MS exposures in primary hepatocytes. Treatment with ATZ and MS reduced catalase (CAT) and glutathione peroxidase (GPx) activities, and decreased CAT and GPx activities recovered to normal values upon withdrawal. Although oxidative stress of up to 6 h duration did not cause cell death, sustained oxidative stress (over 9 h) induced apoptosis. The increase in the glutathione disulfide/reduced glutathione ratio under oxidative stress up to 6 h was transient and reversible, while that due to sustained oxidative stress was irreversible. These results suggest that irreversible redox shifts resulting from sustained oxidative stress play a critical role in the induction of hepatocyte apoptosis in this experimental system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号