首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Progression of human immunodeficiency virus type 1 (HIV-1) infection in humans is marked by declining CD4+-T-cell counts and increasing virus load (VL). Cytotoxic T lymphocytes (CTL) play an important role in the lysis of HIV-infected cells, especially during the early phase of asymptomatic infection. CTL responses in the later phase of disease progression may not be as effective since progressors with lower CD4+-T-cell counts have consistently higher VL despite having elevated CTL counts. We hypothesized that, apart from antiviral effects, some CTL might also contribute to AIDS pathogenesis by depleting CD4+ T cells and that this CTL activity may correlate with the VL in AIDS patients. Therefore, a cross-sectional study of 31 HIV-1-infected patients at various clinical stages was carried out. Purified CTL from these donors as well as HIV-seronegative controls were used as effectors against different human cell targets by using standard 51Cr release cytolytic assays. A direct correlation between VL and CTL-mediated, major histocompatibility complex (MHC)-unrestricted lysis of primary CD4+-T-cell, CEM.NKR, and K562 targets was observed. CD4+-T-cell counts and duration of infection also correlated with MHC-unrestricted cytolytic activity. Our data clearly show that gammadelta CTL are abnormally expanded in the peripheral blood of HIV-infected patients and that the Vdelta1 subset of gammadelta T cells is the main effector population responsible for this type of cytolysis. The present data suggest that gammadelta CTL can contribute to the depletion of bystander CD4+ T cells in HIV-infected patients as a parallel mechanism to HIV-associated immunopathogenesis and hence expedite AIDS progression.  相似文献   

4.
5.
The tat gene of the human immunodeficiency virus, tat-III, when introduced into T-lymphoblastoid Jurkat cells by a Moloney retroviral recombinant DNA vector expressed high levels of the functional tat protein as measured by the chloramphenicol acetyltransferase assay. Immunofluorescence analysis with CD4-specific monoclonal antibodies demonstrated that the cell surface levels of the CD4 antigen were increased by 5- to 10-fold in the tat-III-infected Jurkat cells. Cellular cytoplasmic RNA analysis indicated that the enhanced CD4 expression was mediated at the mRNA level. Our findings suggest that the single expression of the human immunodeficiency virus tat protein in the absence of the other viral proteins causes an upregulation of CD4 gene expression on helper T cells, although infection of these cells by the virus, thus expressing all the viral gene products including tat, is known to downregulate CD4 antigen expression.  相似文献   

6.
Nef is a viral regulatory protein of the human immunodeficiency virus (HIV) that has been shown to contribute to disease progression. Among its putative effects on T cell functions are the down-regulation of CD4 and major histocompatibility class I surface molecules. These effects occur in part via Nef interactions with intracellular signaling molecules. We sought to better characterize the effects of HIV Nef on T cell function by examining chemotaxis in response to stromal cell-derived factor-1alpha (SDF-1alpha) as well as CXCR4 signaling molecules. Here, we report the novel observation that HIV Nef inhibited chemotaxis in response to SDF-1alpha in both Jurkat T cells and primary peripheral CD4+ T lymphocytes. Our data indicate that HIV Nef altered critical downstream molecules in the CXCR4 pathway, including focal adhesion kinases. These findings suggest that HIV Nef may blunt the T cell response to chemokines. Because T lymphocyte migration is an integral component of host defense, HIV Nef may thereby contribute to the pathogenesis of AIDS.  相似文献   

7.
The nef gene, which encodes related cytoplasmic proteins in both human (HIV) and simian (SIV) immunodeficiency viruses is dispensable for viral replication in vitro. In contrast, in vivo experiments have revealed that SIV nef is required for efficient viral replication and development of AIDS in SIV infected rhesus monkeys, thus indicating that nef plays an essential role in the natural infection. We show that expression of the Nef protein from the HIV-1 NL43 isolate in transgenic mice perturbs development of CD4+ T cells in the thymus and elicits depletion of peripheral CD4+ T cells. Thymic T cells expressing NL43 Nef show altered activation responses. In contrast, Nef protein of the HIV-1 HxB3 isolate does not have an overt effect on T cells when expressed in transgenic animals. The differential effects of the two HIV-1 nef alleles in transgenic mice correlate with down-regulation of CD4 antigen expression on thymic T cells. The differential interactions of the NL43 and HxB3 nef alleles with CD4 were reproduced in a transient assay in human CD4+ CEM T cells. Down-regulation of CD4 by nef in both human and transgenic murine T cells indicates that the relevant interactions are conserved in these two systems and suggests that the consequences of Nef expression on the host cell function can be analyzed in vivo in the murine system. Our observations from transgenic mice suggest that nef-elicited perturbations in T cell signalling play an important role in the viral life cycle in vivo, perhaps resulting in elimination of infected CD4+ T cells.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.  相似文献   

9.
Transduction of hematopoietic stem cells with genes that inhibit human immunodeficiency virus (HIV) replication has the potential to reconstitute immune function in individuals with AIDS. We evaluated the ability of an autoregulated gene, antitat, to inhibit replication of simian immunodeficiency virus (SIV) and HIV type 1 (HIV-1) in hematopoietic cells derived from transduced progenitor cells. The antitat gene expresses an antiviral RNA encoding polymeric Tat activation response elements in combination with an antisense tat moiety under the control of the HIV-1 long terminal repeat. CD34+ hematopoietic progenitor cells were transduced with a retroviral vector containing the antitat gene and then cultured under conditions that support in vitro differentiation of T cells or macrophage-like cells. Rhesus macaque CD4+ T cells and macrophage-like cells derived from CD34+ bone marrow cells transduced with the antitat gene were highly resistant to challenge with SIV, reflecting a 2- to 3-log reduction in peak SIV replication compared with controls. Similarly, human CD4+ T cells derived from CD34+ cord blood cells transduced with antitat were also resistant to infection with HIV-1. No evidence for toxicity of the antitat gene was observed in any of five different lineages derived from transduced hematopoietic cells. These results demonstrate that a candidate therapeutic gene introduced into hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication following T-cell differentiation and support the potential use of the antitat gene for stem cell gene therapy.  相似文献   

10.
11.
12.
CD4+ T-cell death is a crucial feature of AIDS pathogenesis, but the mechanisms involved remain unclear. Here, we present in vitro findings that identify a novel process of HIV1 mediated killing of bystander CD4+ T cells, which does not require productive infection of these cells but depends on the presence of neighboring dying cells. X4-tropic HIV1 strains, which use CD4 and CXCR4 as receptors for cell entry, caused death of unstimulated noncycling primary CD4+ T cells only if the viruses were produced by dying, productively infected T cells, but not by living, chronically infected T cells or by living HIV1-transfected HeLa cells. Inducing cell death in HIV1-transfected HeLa cells was sufficient to obtain viruses that caused CD4+ T-cell death. The addition of supernatants from dying control cells, including primary T cells, allowed viruses produced by living HIV1-transfected cells to cause CD4+ T-cell death. CD4+ T-cell killing required HIV1 fusion and/or entry into these cells, but neither HIV1 envelope-mediated CD4 or CXCR4 signaling nor the presence of the HIV1 Nef protein in the viral particles. Supernatants from dying control cells contained CD95 ligand (CD95L), and antibody-mediated neutralization of CD95L prevented these supernatants from complementing HIV1 in inducing CD4+ T-cell death. Our in vitro findings suggest that the very extent of cell death induced in vivo during HIV1 infection by either virus cytopathic effects or immune activation may by itself provide an amplification loop in AIDS pathogenesis. More generally, they provide a paradigm for pathogen-mediated killing processes in which the extent of cell death occurring in the microenvironment might drive the capacity of the pathogen to induce further cell death.  相似文献   

13.
14.
Regulated expression of recombinant genes in CD4+ cells is an important objective for gene therapy of AIDS, as these cells represent the principal target for viral replication of human immunodeficiency virus (HIV). We report here that specific combinations of CD4 cell-specific and viral regulatory elements can enhance expression of an antiviral gene product. Different viral regulatory elements were incorporated into a previously reported CD4 locus control region to increase the expression of reporter genes in T and monocytic cell lines. The CD4-specific regulatory elements were included to enhance expression in CD4 cells, and viral regulatory regions, including the cytomegalovirus immediate-early (CMV IE) upstream enhancer, which contains the kappa B and Ap1 regulatory elements and a Tat-responsive element of the HIV type 1 long terminal repeat, were used to increase gene expression and modulate its activity in response to viral infection. In transient transfection assays, this vector was 100- to 1,000-fold more active than the original CD4 regulatory elements alone. Expression of an inhibitory form of the Rev protein, Rev M10, was more effective than previously described vectors and protected against productive viral replication in CD4+ peripheral blood mononuclear cells. The combination of CD4 lineage-specific and viral regulatory elements will facilitate the development of more effective antiviral genetic strategies for AIDS.  相似文献   

15.
Macrophage tropic (M-tropic) human immunodeficiency virus (HIV) infection of primary human T cells and macrophages requires optimal cell surface expression of the chemokine receptor CCR5 in addition to CD4. Natural mutations of CCR5 that impair surface expression bestow in the homozygous state complete resistance to M-tropic HIV infection. ccr5Delta32 is the major prototype of such mutants. ccr5Delta32 heterozygosity is associated with delayed onset of AIDS and reduced risk of initial transmission, and this correlates with reduced levels of CCR5 and reduced infectability of CD4+ cells. In addition to gene dosage, sequestration of wild type (WT) CCR5 by mutant protein has been proposed as a mechanism to explain reduced surface expression of CCR5 in cells from ccr5Delta32 and CCR5-893(-) heterozygotes. However, here we demonstrate that a molar excess of ccr5Delta32 or related deletion mutants does not significantly impair the cell surface density of co-expressed WT receptor either in human epithelial cells or Jurkat T cells. Further, ligand-dependent signaling and M-tropic HIV usage of WT receptor are also unaffected. Nascent WT receptor does associate with ccr5Delta32 and related mutant proteins and with other unrelated CC and CXC chemokine receptors under transient labeling conditions. However, using confocal microscopy, we demonstrate that in the steady state, WT and truncated CCR5 proteins segregate into nonoverlapping subcellular compartments. These findings together with the observed and known variability in the cell surface density of CCR5 on quiescent PBLs lead us to conclude that reduced CCR5 gene dosage rather than receptor sequestration is the major determinant of reduced CCR5 expression in cells from ccr5Delta32 heterozygotes.  相似文献   

16.
The type D simian retroviruses cause immunosuppression in macaques and have been reported as a presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2. We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selection yielded 12 cellular clones that were highly susceptible to a beta-galactosidase-encoding lacZ(RD114) pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product from 10 positive clones. Expression of the 2.9-kb cDNA in Chinese hamster ovary cells conferred susceptibility to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb cDNA predicted a protein of 541 amino acids that had 98% identity with the previously cloned human Na+-dependent neutral-amino-acid transporter Bo. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular uptake of L-[3H]alanine and L-[3H]glutamine. RNA blot (Northern) analysis suggested that the RD114 receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human Bo transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114 receptor.  相似文献   

17.
After infection with human immunodeficiency virus (HIV), progression toward immunodeficiency is governed by a complex interplay of viral and host determinants. The viral accessory protein Nef is a key factor for the development of AIDS. Strains of HIV and simian immunodeficiency virus that lack functional nef genes either do not induce AIDS or do so only after a significant delay. The validity of a transgenic-small-animal model for de novo infection by HIV will depend on its ability to recapitulate the actions of critical factors of viral pathogenicity, such as Nef. We assessed the ability of rat, mouse, and hamster cells to support key effector functions of Nef. In cell lines from rodents, the subcellular distribution of wild-type HIV type 1 strain SF2 Nef and mutants was comparable to that in human cells. Nef downregulated human CD4 from the cell surface, was associated with p21-activated kinase activity, and enhanced the infectivity of HIV-1 virions. Importantly, these Nef-induced effects, as well as the downregulation of rat CD4 and major histocompatibility complex class I molecules, could also be demonstrated in primary T lymphocytes and macrophages from human CD4-transgenic rats. Thus, HIV-1 Nef exerts key functions in rodent cells. In line with our ongoing efforts to establish a transgenic-rat model of HIV disease, these results indicate that important aspects of viral pathogenesis could be addressed in a transgenic-rodent model permissive for de novo infection and that such a model would be valuable for evaluating the function of Nef in vivo.  相似文献   

18.
HIV infection does not require endocytosis of its receptor, CD4   总被引:36,自引:0,他引:36  
The T cell surface molecule CD4 interacts with class II MHC molecules on the surface of target cells as well as with the envelope glycoprotein of human immunodeficiency virus (HIV). Internalization of CD4 molecules is observed after exposure of CD4+ T cells to either phorbol esters or appropriate antigen-bearing target cells. To determine whether HIV entry proceeds via receptor-mediated endocytosis or direct viral fusion with the cell membrane, we have constructed two mutants in the cytoplasmic domain of the CD4 protein that severely impair the ability of CD4 molecules to undergo endocytosis. Quantitative infectivity studies reveal that HeLa cell lines expressing wild-type or mutant CD4 molecules are equally susceptible to HIV infection. In addition, HIV binding does not lead to CD4 endocytosis. These studies indicate that although the CD4 molecule can be internalized, HIV entry proceeds via direct fusion of the viral envelope with the cell membrane.  相似文献   

19.
HIV-1 infections lead to a progressive depletion of CD4 cells culminating in AIDS. The coreceptor usage by HIV varies from CCR5 (R5) tropic early in infection to CXCR4 (X4) tropic in later infections. Although the coreceptor switch from R5 to X4 tropic HIV is well associated with progression to AIDS, the role of CCR5 in disease progression especially in patients infected exclusively with R5 isolates throughout the disease remains enigmatic. To better understand the role of CCR5 and R5 tropic HIV envelope in AIDS pathogenesis, we asked whether the levels of CCR5 and/or HIV Env-mediated fusion determine apoptosis of bystander cells. We generated CD4(+) T cell lines expressing varying levels of CCR5 on the cell surface to show that CCR5 expression levels correlate with bystander apoptosis induction. The mechanism of apoptosis involved caspase-3 activation and mitochondrial depolarization and was dependent on gp41 fusion activity as confirmed by fusion-restricted gp41 point mutants and use of the fusion inhibitor T20. Interestingly, lower levels of CCR5 were able to support virus replication in the absence of bystander apoptosis. Our findings suggest that R5 HIV-1-mediated bystander apoptosis is dependent on both CCR5 expression levels as well as fusogenic activity of the Env glycoprotein.  相似文献   

20.
S Huang  R I Endo    G R Nemerow 《Journal of virology》1995,69(4):2257-2263
Entry of human adenovirus into host cells involves interaction of virus particles with two distinct receptors. The initial binding event is mediated by the fiber protein, while subsequent interaction of the penton base protein with alpha v integrins promotes virus internalization and/or penetration. Although these interactions in epithelial and endothelial cells have been well characterized, relatively little is known as to whether these events occur during virus infection of human peripheral blood mononuclear cells. We demonstrate that freshly isolated peripheral blood monocytes and T lymphocytes express very small amounts of alpha v integrins and also are resistant to adenovirus infection. Exposure of monocytes to hematopoietic growth factors granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor induced expression of cell surface alpha v integrins, promoted the binding of penton base protein, and also rendered these cells susceptible to adenovirus-mediated gene delivery. Stimulation of T cells with a mitogen, phytohemagglutinin, or a cell-activating agent, phorbol myristate acetate, induced expression of alpha v integrins and also enhanced adenovirus-mediated gene delivery. These studies further indicate that alpha v integrins play a crucial role in adenovirus infection and also provide a useful strategy for enhancing adenovirus-mediated gene delivery into human peripheral blood mononuclear cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号