首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

2.
Ribonuclease P (RNase P) is the ribonucleoprotein endonuclease that processes the 5' ends of precursor tRNAs. Bacterial and eukaryal RNase P RNAs had the same primordial ancestor; however, they were molded differently by evolution. RNase P RNAs of eukaryotes, in contrast to bacterial RNAs, are not catalytically active in vitro without proteins. By comparing the bacterial and eukaryal RNAs, we can begin to understand the transitions made between the RNA and protein-dominated worlds. We report, based on crosslinking studies, that eukaryal RNAs, although catalytically inactive alone, fold into functional forms and specifically bind tRNA even in the absence of proteins. Based on the crosslinking results and crystal structures of bacterial RNAs, we develop a tertiary structure model of the eukaryal RNase P RNA. The eukaryal RNA contains a core structure similar to the bacterial RNA but lacks specific features that in bacterial RNAs contribute to catalysis and global stability of tertiary structure.  相似文献   

3.
A comparative overview of the subunit taxonomy and sequences of eukaryotic and prokaryotic RNA polymerases indicates the presence of a core structure conserved between both sets of enzymes. The differentiation between prokaryotic and eukaryotic polymerases is ascribed to domains and subunits peripheral to the largely conserved central structure. Possible subunit and domain functions are outlined. The core's flexible shape is largely determined by the elongated architecture of the two largest subunits, which can be oriented along the DNA axis with their bulkier amino-terminal head regions looking towards the 3' end of the gene to be transcribed and their more slender carboxyl-terminal domains at the tail end of the enzyme. The two largest prokaryotic subunits appear originally derived from a single gene.  相似文献   

4.
5.
The ribosome undergoes pronounced periodic conformational changes during protein synthesis. Of particular importance are those occurring around the decoding site, the region of the 16 S rRNA interacting with the mRNA-(tRNA)(2) complex. We have incorporated structural information from X-ray crystallography and nuclear magnetic resonance into cryo-electron microscopic maps of ribosomal complexes designed to capture structural changes at the translocation step of the polypeptide elongation cycle. The A-site region of the decoding site actively participates in the translocation of the tRNA from the A to the P-site upon GTP hydrolysis by elongation factor G, shifting approximately 8 A toward the P-site. This implies that elongation factor G actively pushes both the decoding site and the mRNA/tRNA complex during translocation.  相似文献   

6.
We report the identification of a novel compound that binds to the Escherichia coli 16S ribosomal A-site. Binding by the compound was observed using nuclear magnetic resonance and mass spectrometry techniques. We show that the compound binds in the same position in the A-site RNA as occupied by the aminoglycoside class of antibiotics.  相似文献   

7.
The potential of aminoglycoside antibiotics to induce premature stop codon read-through in eukaryotic systems has been reported recently, inspiring the evaluation of structural alterations within the Homo sapiens cytoplasmic decoding center on ligand binding. Here we report the employment of an affinity screen capable of monitoring conformational changes of adenines 1492 and 1493 in solution. Thus, changes induced by the presence of a ligand can be directly translated to binding affinities for the eukaryotic decoding center. Binding data for the eukaryotic ribosomal decoding center can be easily obtained by this method and are in excellent agreement with previously reported values measured by alternative techniques. Furthermore, a good correlation is obtained between the experimental binding affinities and the biological activity of the compounds examined. In addition, illustrating the generality of the assay, unnatural rigid aminoglycoside analogues of potential therapeutic significance were evaluated.  相似文献   

8.
9.
Wybutine (Ywye), situated next to the 3'-side of the anticodon of tRNAPhe from Saccharomyces cerevisiae, can be photo-crosslinked to mRNA when bound to Escherichia coli ribosomes. Crosslinking can be obtained with poly(U) as well as with oligonucleotides such as pAUGUUU or p(U)6. In order to identify the site of reaction on the mRNA, 5'-[32P]-labelled pAUGUUU was crosslinked by irradiation at 320 nm with Phe-tRNAPhe from yeast bound to the acceptor-site. The photoproduct was subsequently digested with P1-nuclease and analyzed by electrophoresis followed by homochromatography in the second dimension. As a result of the photoreaction the wybutine was found to be crosslinked to the U at the 5'-position of the corresponding UUU-codon.  相似文献   

10.
11.
The actinoporins are a family of proteins from sea anemones that lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being resistant to these toxins. Pore formation by the actinoporin equinatoxin II (EqTII) proceeds by membrane binding via a surface rich in aromatic residues, followed by translocation of the N-terminal region to the membrane and, finally, across the bilayer to form a functional pore. A key feature of this mechanism is the ability of the N-terminal region to form a stable, bilayer-spanning helix in the membrane, which in turn requires dissociation of the N-terminus from the bulk of the protein and significant extension of the N-terminal helix of native EqTII. In this study the structures of three peptides corresponding to residues 11-29, 11-32, and 1-32, respectively, of EqTII have been investigated by high-resolution nuclear magnetic resonance and Fourier transform infrared spectroscopy. The 32-residue peptide lacks ordered secondary structure in water, but residues 6-28 form a helix in dodecylphosphocholine micelles. Although this helix is long enough to span a bilayer membrane, this peptide and the shorter analogues display limited permeabilizing activity in large unilamellar vesicles and very weak hemolytic activity in human red blood cells. Thus, while the N-terminal region has the structural features required for this unusual mechanism of pore formation, the lack of activity of the isolated N-terminus shows that the bulk of the protein is essential for efficient pore formation by facilitating initial membrane binding, interacting with sphingomyelin, or stabilizing the oligomeric pore.  相似文献   

12.
13.
R J Hayes  K W Buck 《Cell》1990,63(2):363-368
A soluble RNA-dependent RNA polymerase was isolated from Nicotiana tabacum plants infected with cucumber mosaic virus (CMV), which has a genome of three positive-strand RNA components, 1, 2, and 3. The purified polymerase contained two virus-encoded polypeptides and one host polypeptide. Polymerase activity was completely dependent on addition of CMV RNA as template, and the products of reaction were single-stranded (ss) RNA and double-stranded (ds) RNA, corresponding to RNAs 1, 2, and 3, and a subgenomic RNA (RNA 4) derived from RNA 3. The ratio of ssRNA to dsRNA was about 5:1, and the ssRNA was shown to be predominantly the positive strand. This demonstrates the complete replication of a eukaryotic virus RNA in vitro by a template-dependent RNA polymerase.  相似文献   

14.
Transcription of eukaryotic ribosomal RNA gene   总被引:4,自引:0,他引:4  
  相似文献   

15.
Initiation of eukaryotic messenger RNA synthesis   总被引:7,自引:0,他引:7  
  相似文献   

16.
Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S rRNA with its eukaryotic counterpart, resulting in bacterial hybrid ribosomes with a fully functional eukaryotic rRNA decoding site. Cell-free translation assays demonstrated that hybrid ribosomes carrying the rRNA decoding site of higher eukaryotes show pronounced resistance to aminoglycoside antibiotics, equivalent to that of rabbit reticulocyte ribosomes, while the decoding sites of parasitic protozoa show distinctive drug susceptibility. Our findings suggest that phylogenetically variable components of the ribosome, other than the rRNA-binding site, do not affect aminoglycoside susceptibility of the protein-synthesis machinery. The activities of the hybrid ribosomes indicate that helix 44 of the rRNA decoding site behaves as an autonomous domain, which can be exchanged between ribosomes of different phylogenetic domains for study of function.  相似文献   

17.
Antigenic homology of eukaryotic RNA polymerases   总被引:6,自引:0,他引:6  
Facilitated by an improved enzyme purification procedure, antisera to calf thymus DNA-dependent RNA polymerase II was prepared in hens. Using immunoprecipitation and inhibition of enzymatic activity the immunological properties of several eukaryotic RNA polymerases were examined. Purified calf thymus and rat liver polymerase II exhibited antigenic homology. The partially purified amphibian (Xenopus laevis) and protozoan (Tetrahymena pyriformis) polymerase II had reduced crossreactivities. Calf thymus polymerase I also shared antigenic homology with the form II enzymes.  相似文献   

18.
19.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

20.
Tor Y 《Biochimie》2006,88(8):1045-1051
The specific binding of aminoglycoside antibiotics to the bacterial ribosomal decoding site (A-site) has inspired the study of RNA-small molecules interactions and the search for novel RNA binders. Among the numerous RNA targets studied so far, the A-site holds a unique place. It is among the few truly validated RNA targets for which naturally occurring ligands have been discovered as "cognate" binders. In addition, due to its encapsulating architecture, the A-site is a more discriminating RNA target when compared to other RNA sequences. Previous observations and current challenges for the designers of potent and specific RNA binders are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号