首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

Detection of hydroxyl free radicals is frequently performed by electron spin resonance (ESR) following spin trapping of the radical using 5,5-dimethylpyrroline N-oxide (DMPO) to generate a stable free radical having a characteristic ESR spectrum. The necessary ESR equipment is expensive and not readily available to many laboratories. In the present study, a specific and sensitive gas chromatography—mass spectrometry (GC/MS) method for detection of hydroxyl and hydroxyethyl free radicals is described. The DMPO or N-t-butyl—α—phenylnitrone (PBN) radical adducts are extracted and derivatized by trimethylsylilation and analyzed by GC/MS. To standardize the method, .OH and 1-hydroxyethyl radicals were generated in two different systems: 1) a Fenton reaction in a pure chemical system in the absence or presence of ethanol and 2) in liver microsomal suspensions where ethanol is metabolized in the presence of NADPH. In the Fenton system both radicals were easily detected and specifically identified using DMPO or PBN. In microsomal suspensions DMPO proved better for detection of .OH radicals and PBN more suitable for detection of 1-hydroxyethyl radicals. The procedure is specific, sensitive and potentially as useful as ESR.  相似文献   

2.
Neopterin and 7,8-dihydroneopterin, two compounds which are secreted by activated macrophages, have been shown to interfere with radicals generated by cellular and certain chemical systems. Reduced pterins were reported to scavenge whereas aromatic pterins promoted or reduced radical mediated reactions or had no effect. However, recently it was found that high concentrations of 7, 8-dihydroneopterin enhanced luminol dependent chemiluminescence and T-cell apoptosis, suggesting an enhancement of free radical formation. In this study hydroxylation of salicylic acid was used for detection of hydroxyl radicals. It is shown that in solutions of 7,8-dihydroneopterin hydroxyl radicals were formed in the absence of any radical source. The presence of EDTA chelated iron enhanced hydroxyl radical formation. Whereas the addition of iron accelerated the hydroxylation reaction, 7,8-dihydroneopterin was responsible for the amount of hydroxylation products. In the presence of superoxide dismutase or catalase, as well as by helium purging, hydroxylation was inhibited. Our data suggest that in solutions of 7, 8-dihydroneopterin superoxide radicals are generated which are converted to hydroxyl radicals by Fenton or Haber-Weiss type reactions. While superoxide might be generated during autoxidation of ferrous iron, dihydroneopterin seems to be involved in regeneration of ferrous iron from the ferric form.  相似文献   

3.
Cells require molecular oxygen for the generation of energy through mitochondrial oxidative phosphorylation; however, high concentrations of oxygen are toxic and can cause cell death. A number of different mechanisms have been proposed to cause cellular oxygen toxicity. One hypothesis is that reactive oxygen free radicals may be generated; however free radical generation in hyperoxic cells has never been directly measured and the mechanism of this radical generation is unknown. In order to determine if cellular oxygen toxicity is free radical mediated, we applied electron paramagnetic resonance, EPR, spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide, DMPO, to measure free radical generation in hyperoxic pulmonary endothelial cells. Cells in air did not give rise to any detectable signal. However, cells exposed to 100% O2 for 30 min exhibited a prominent signal of trapped hydroxyl radical, DMPO-OH, while cell free buffer did not give rise to any detectable radical generation. This cellular radical generation was demonstrated to be derived from the superoxide radical since the observed signal was totally quenched by superoxide dismutase, but not by equal concentrations of the denatured enzyme. It was confirmed that the hydroxyl radical was generated since in the presence of ethanol the CH3 CH(OH) radical was formed. Loss of cell viability as measured by uptake of trypan blue dye was observed paralleling the measured free radical generation. Thus, superoxide and hydroxyl radicals are generated in hyperoxic pulmonary endothelial cells and this appears to be an important mechanism of cellular oxygen toxicity.  相似文献   

4.
Free radicals are implicated in many diseases including atherosclerosis, cancer and also in rheumatoid arthritis. Reaction of uric acid with free radicals, such as hydroxyl radical and hypochlorous acid (HOCl) results in allantoin production. In this study, we measured the serum allantoin levels, oxidation products of uric acid, as a marker of free radical generation in rheumatoid arthritis. Fasting blood samples were obtained from 21 rheumatoid patients and 15 healthy controls. In this study, the serum allantoin and uric acid levels were measured by a gas chromatography–mass spectrometry method and the ratios were calculated. The mean allantoin and uric acid levels and ratios in the patient group were 22.1±11.3, 280.5±65.0 and 8.0±3.7?μM, while in the control group they were 13.6±6.3, 278.3±53.6 and 4.9±2.1?μM, respectively. The effects of gender, age, menopausal status, duration of disease and medications on serum allantoin and uric acid levels of the patient and control groups were studied. Our results suggest that uric acid acts as a free radical scavenger and thus is converted to allantoin. Increased allantoin levels suggest the possible involvement of free radicals in rheumatoid arthritis.  相似文献   

5.
Yin H  Zhu M 《Free radical research》2012,46(8):959-974
Cardiolipin (CL) is a mitochondria-specific phospholipid and is critical for maintaining the integrity of mitochondrial membrane and mitochondrial function. CL also plays an active role in mitochondria-dependent apoptosis by interacting with cytochrome c (cyt c), tBid and other important Bcl-2 proteins. The unique structure of CL with four linoleic acid side chains in the same molecule and its cellular location make it extremely susceptible to free radical oxidation by reactive oxygen species including free radicals derived from peroxidase activity of cyt c/CL complex, singlet oxygen and hydroxyl radical. The free radical oxidation products of CL have been emerged as important mediators in apoptosis. In this review, we summarize the free radical chemical mechanisms that lead to CL oxidation, recent development in detection of oxidation products of CL by mass spectrometry and the implication of CL oxidation in mitochondria-mediated apoptosis, mitochondrial dysfunction and human diseases.  相似文献   

6.
Metal catalyzed oxidation (MCO), which typically involves oxygen free radical generation, is an important pathway that leads to the deterioration of many biological molecules in solution. The occurrence of MCO in immobilized metal affinity chromatography (IMAC) systems and its potential for inactivating biological products has not been well recognized. In this study, we report the inactivation of herpes simplex virus type 1 (HSV-1) gene therapy vector on immobilized cobalt affinity chromatography. We observed that purification of KgBHAT, an HSV-1 mutant bearing cobalt affinity tags (HAT) on the surface, on an IDA-Co2+ column using crude supernatant as starting material resulted in signification loss in virus infectivity (<5% recovery). Electron spin resonance (ESR) revealed that the virus inactivation was caused by hydroxyl free radicals generated from the interactions between cellular impurities and the metal ions on the column. Inclusion of 20 mM ascorbate, a free radical scavenger, in the chromatography mobile phase effectively scavenged the hydroxyl radicals and dramatically augmented the infectivity recovery to 70%. This finding is the first demonstration of oxygen free radical-mediated biological inactivation in an actual IMAC purification and the way on how to effectively prevent it.  相似文献   

7.
DNA-protein cross-links are formed when living cells or isolated chromatin is exposed to ionizing radiation. Little is known about the actual cross-linked products of DNA and proteins. In this work, a novel hydroxyl radical induced cross-link of thymine and tyrosine has been isolated along with a tyrosine dimer by high-performance liquid chromatography of aqueous mixtures of tyrosine and thymine that had been exposed to hydroxyl radicals generated by ionizing radiation. The isolated compounds have been examined by gas chromatography-mass spectrometry, high-resolution mass spectrometry, and 1H and 13C nuclear magnetic resonance spectroscopy. The structure of the thymine-tyrosine cross-link has been identified as the product from the formation of a covalent bond between the methyl group of the thymine and carbon 3 of the tyrosine ring. In addition, the 3,3' tyrosine dimer was isolated and characterized. The mechanism of the formation of these compounds is discussed. This work presents the first complete chemical characterization of a hydroxyl radical induced DNA base-amino acid cross-link.  相似文献   

8.
Two cyclic hydroxylamines (cHA) bearing pyrrolidine (CPH) and piperidine moieties (TMTH) were evaluated to trap hydroxyl, peptide and phospholipid free radicals using mass spectrometry for their detection. The cHA ionized as [M+H](+) ions, showing higher relative abundances when compared to the DMPO, probably due to higher ionization efficiency. In the presence of hydroxyl radicals, both cHA generated new ions that could be attributed to loss of (*)H and (*)CH(3), most likely deriving from decomposition reactions of the nitroxide spin adduct. Addition of cHA to Leucine-enkephalin and palmitoyl-lineloyl-glycerophosphatidylcholine free radicals promoted the formation of cHA biomolecule adducts, which were confirmed by MS/MS data. Results suggest that the cHA are not suitable for hydroxyl radical trapping but can be used for trapping biomolecule radicals, having the advantage, over the most used cyclic nitrones, of being water soluble. The biomolecule adducts identified by MS are ESR silent, evidencing the importance of MS detection.  相似文献   

9.
The antitumor antibiotic bleomycin degrades DNA in the presence of ferric ions and H2O2 or in the presence of ferric ions, oxygen, and ascorbic acid. When DNA degradation is measured as formation of base propenals by the thiobarbituric acid assay, it is not inhibited by superoxide dismutase and scavengers of the hydroxyl radical or by catalase (except that catalase inhibits in the bleomycin/ferric ion/H2O2 system by removing H2O2). Using the technique of gas chromatography/mass spectrometry with selected-ion monitoring, we show that DNA degradation is accompanied by formation of small amounts of modified DNA bases. The products formed are identical with those generated when hydroxyl radicals react with DNA bases. Base modification is significantly inhibited by catalase and partially inhibited by scavengers of the hydroxyl radical and by superoxide dismutase. We suggest that the bleomycin-oxo-iron ion complex that cleaves the DNA to form base propenals can decompose in a minor side reaction to generate hydroxyl radical, which accounts for the base modification in DNA. However, hydroxyl radical makes no detectable contribution to the base propenal formation.  相似文献   

10.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

11.
Production of oxygen free radicals is a natural consequence of aerobic metabolism and they are constantly generated in vivo by chemical reactions and metabolic processes. Antioxidant defence systems scavenge and minimise the formation of oxygen-radical-derived biochemical products, however, these defences are not completely effective even under normal physiological conditions. In pathologic situations, oxygen free radicals can be generated in excess of a cell's antioxidant capacity resulting in severe damage to cellular constituents including proteins, DNA and lipids. The inherent biochemical and physiological charateristics of the brain, including high lipid concentrations and energy requirements, make it particularly susceptible to free radical mediated insult. Increasing evidence indicates that many neurological disorders may have components of free radical and oxidative stress induce injury.  相似文献   

12.
The hydroxyl radicals are widely implicated in oxidation of carbohydrates during biological and industrial processes being responsible for their structural modifications and causing functional damage. The identification of intermediate oxidation products is hampered by a lack of reliable sensible methods for their detection. In this study, the oxidation of two models of galactomannans (Man3 and GalMan2) has been studied in reaction with hydroxyl radical generated by Fenton reaction. The oxidation patterns were assessed using preparative ligand-exchange/size-exclusion chromatography (LEX/SEC) coupled with tandem electrospray mass spectrometry (ESI-MS/MS). This allowed the identification of derived oligosaccharides (OS) containing hexuronic, hexonic, pentonic and erythronic acid residues and neutral OS bearing hydroperoxy, hydrated carbonyl moieties and residues from pyranosyl ring cleavage. The depolymerization products have been also detected upon oxidation of oligomers. This study allowed developing a simple, effective ‘fingerprinting’ protocol for detecting the damage done to mannans by oxidative radicals.  相似文献   

13.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

14.
Free radicals do not commonly add to nucleotides in DNA, despite the fact that radicals are produced in all aerobically metabolizing cells. Why is this? For oxy-radicals, the ratio of the rate constant for addition to double bonds divided by that for H-abstraction from good H-donors parallels the electrophilicity of the radical, and among oxy-radicals the hydroxyl radical is the most electrophilic, with an unusually high ratio of Kad/kH. The hydroxyl radical also is very reactive in H-atom abstraction reactions, with a large absolute value of kH. However, the hydroxyl radical's high reactivity makes it unselective and relatively nondiscriminating between H-abstraction from a sugar moiety in DNA and penetration to, and reaction with, a base. Oxy-radicals such as alkoxyl and peroxyl radicals do not have as high electrophilicity or as high reactivity. Interestingly, carbon-centered radicals (such as the methyl radical) also can both add to double bonds and abstract H-atoms, but carbon-centered radicals are not commonly observed to add to DNA bases. However, they cannot be generated near DNA in vivo. In contrast, hydroxyl radical generating systems appear to complex with DNA and produce the hydroxyl radical in the immediate vicinity of the DNA, producing a type of DNA damage that is called site specific. Thus, addition of a radical to a DNA base may require all three features possessed by the hydroxyl radical: high electrophilicity, high thermokinetic reactivity, and a mechanism for production near DNA.  相似文献   

15.
Production, detection, and adaptive responses to free radicals in exercise   总被引:2,自引:0,他引:2  
Free radicals (particularly oxygen- and nitrogen-centered radicals), and related reactive oxygen and nitrogen species, are generated in cells and tissues during exercise. Mitochondria (actually, 'leakage' of electrons from ubisemiquinone and other electron transport chain components), xanthine oxidase, and phagocytes such as neutrophils may all contribute to free radical production. In this article we review mechanisms of free radical production during exercise and methods for detecting free radicals and related reactive species, during, or immediately following exercise. The evidence presented strongly suggests that free radicals generated during mild to moderate endurance-type exercise actually form part of the mechanism of exercise adaptation that includes extensive biogenesis of muscle mitochondria, increased muscle blood supply, and altered fuel consumption patterns. We suggest, as originally proposed [1], that (at moderately increased levels) free radicals actually act as intracellular signaling molecules to initiate exercise adaptation. In contrast, endurance exercise of extreme duration and extreme intensity appears to generate much higher levels of free radicals that overwhelm cellular antioxidant defenses, and cause tissue damage. Such free radical damage requires effective protein, lipid, and DNA repair systems, and sufficient recuperation, before exercise adaptation can recommence.  相似文献   

16.
Su M  Yang Y  Yang G 《FEBS letters》2006,580(17):4136-4142
Reactive oxygen species, such as hydroxyl or superoxide radicals, can be generated by exogenous agents as well as from normal cellular metabolism. Those radicals are known to induce various lesions in DNA, including strand breaks and base modifications. These lesions have been implicated in a variety of diseases such as cancer, arteriosclerosis, arthritis, neurodegenerative disorders and others. To assess these oxidative DNA damages and to evaluate the effects of the antioxidant N-acetyl-L-cysteine (NAC), atomic force microscopy (AFM) was used to image DNA molecules exposed to hydroxyl radicals generated via Fenton chemistry. AFM images showed that the circular DNA molecules became linear after incubation with hydroxyl radicals, indicating the development of double-strand breaks. The occurrence of the double-strand breaks was found to depend on the concentration of the hydroxyl radicals and the duration of the reaction. Under the conditions of the experiments, NAC was found to exacerbate the free radical-induced DNA damage.  相似文献   

17.
Of the available techniques used to identify free radicals, spin-trapping offers the unique opportunity to simultaneously measure and distinguish among a variety of important biologically generated free radicals. For superoxide and hydroxyl radical, the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) is most frequently used. However, this nitrone has several drawbacks. For example, its reaction with superoxide is slow, having a second-order rate constant around 10 M-1 s-1. Because of this, high concentrations of DMPO are essential in order to observe the corresponding spin-trapped adduct, 5,5-dimethyl-2-hydroperoxy-1-pyrrolidinyloxy. This may, in some cases, lead to cellular toxicity. In an attempt to circumvent this serious limitation, it has been proposed that an indirect approach be employed to detect and identify free radicals generated as a consequence of ischemia/reperfusion injury. In the direct (most frequently used) approach, the spin trap is first added to an isolated perfused organ under the appropriate experimental conditions. Then, the infusion buffer containing the spin-trap adduct(s) is placed into an quartz flat cell to be inserted into an ESR spectrometer. In the indirect method, the spin trap is added to the perfusate, which had previously exited the organ. Therefore, with this method one can prevent any spin-trap-mediated toxicities to the isolated perfused organ. However, because of the very rapid rate of free radical reactions catalyzed by either superoxide or hydroxyl radical, it is questionable whether ESR spectra recorded using this indirect method result from the actual spin-trapping of free radicals. In this report, we evaluated the indirect spin-trapping technique in light of the kinetic considerations discussed above.  相似文献   

18.
Free radicals are implicated in many diseases including atherosclerosis, cancer and also in rheumatoid arthritis. Reaction of uric acid with free radicals, such as hydroxyl radical and hypochlorous acid (HOCl) results in allantoin production. In this study, we measured the serum allantoin levels, oxidation products of uric acid, as a marker of free radical generation in rheumatoid arthritis. Fasting blood samples were obtained from 21 rheumatoid patients and 15 healthy controls. In this study, the serum allantoin and uric acid levels were measured by a gas chromatography-mass spectrometry method and the ratios were calculated. The mean allantoin and uric acid levels and ratios in the patient group were 22.1±11.3, 280.5±65.0 and 8.0±3.7 μM, while in the control group they were 13.6±6.3, 278.3±53.6 and 4.9±2.1 μM, respectively. The effects of gender, age, menopausal status, duration of disease and medications on serum allantoin and uric acid levels of the patient and control groups were studied. Our results suggest that uric acid acts as a free radical scavenger and thus is converted to allantoin. Increased allantoin levels suggest the possible involvement of free radicals in rheumatoid arthritis.  相似文献   

19.
Although the presence of free radicals has been indicated in ischemic-reperfused heart, the exact nature and source of these free radicals are not known. The present study utilized a chemical trap, salicylic acid, to trap hydroxyl radical which could be detected as hydroxylated benzoic acid using high pressure liquid chromatography. Since the hydroxylated product is extremely stable, heart was subjected to subcellular fractionation after ischemia and reperfusion, and each fraction was separately examined for the presence of hydroxyl radical. The results indicated for the first time the presence of hydroxyl radical in the mitochondrial fraction during early reperfusion, which decreased in intensity as the reperfusion progressed.  相似文献   

20.
《Free radical research》2013,47(3-6):337-342
The purpose of this study was to use electron paramagnetic resonance (EPR) spectroscopy to determine if ibuprofen, [2–(4-isobutylphenyl) propanoic acid], a potent nonsterodial anti-inflammatory agent, could modify hydroxyl radicals generation in vim. Ibuprofen (IBU; 0.1–50 mM) in water or water alone was added to EPR tubes containing ferrous sulfate (0.5–2.0mM). and either 5.5-dimethyl-l-pyrroline-N-oxide (DMPO; 40mM) or a-phenyl N-tert-butyl nitrone (PBN; 48 mM). Hydrogen peroxide (l mM) was added to inititate the Fenton reaction, and the systems were then analyzed by EPR spectroscopy to determine the type and relative quantity of free radical(s) produced. IBU caused a dose-dependent decrease of signal intensity of the hydroxyl radical adduct of DMPO (DMPO-OH) which is an indication that IBU either scavenges the hydroxyl radical and/or chelates iron. In addition, other radicals (presumably IBU radicals) produced in these systems were trapped by both DMPO (aN = 16.1G, aHβ = 24.0G) and PBN (aN = 15.7G. aHβ = 4.4G and aN = 17.0G, aHβ = 2.1 G). The signal height of these IBU radicals increased in systems containing ferrous sulfate (l mM), hydrogen peroxide (lmM), PBN (48mM), and increasing IBU concentrations. Therefore. we conclude that IBU scavenges the hydroxyl radical. If IBU chelated iron, then less hydroxyl radicals would be generated, less IBU radicals formed and the signal height of IBU radicals trapped by PBN would have decreased. However, these data do not fully exclude the possiblity that IBU may, to some extent. also chelate iron. Scavenging of hydroxyl radicals may be one of the mechanisms responsible for the beneficial action of IBU during the management of several rheumatic diseases. However, the IBU radicals produced when IBU scavenges hydroxyl radicals are reactive. and may be associated with the reported toxicity of this therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号