首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-six subsurface samples were collected from a borehole at depths of 173.3 to 196.8 m in the saturated zone at the Hanford Site in south-central Washington State. The sampling was performed throughout strata that included fine-grained lacustrine (lake) sediments, a paleosol (buried soil) sequence, and coarse-grained fluvial (river) sediments. A subcoring method and tracers were used to minimize and quantify contamination to obtain samples that were representative of subsurface strata. Sediment samples were tested for total organic carbon, inorganic carbon, total microorganisms by direct microscopic counts, culturable aerobic heterotrophs by plate counts, culturable anaerobes by most-probable-number enumeration, basal respiration rates, and mineralization of (sup14)C-labeled glucose and acetate. Total direct microscopic counts of microorganisms were low, ranging from below detection to 1.9 x 10(sup5) cells g (dry weight)(sup-1). Culturable aerobes and anaerobes were below minimum levels of detection in most samples. Direct microscopic counts, basal respiration rates, and (sup14)C-glucose mineralization were all positively correlated with total organic carbon and were highest in the lacustrine sediments. In contrast to previous subsurface studies, these saturated-zone samples did not have higher microbial abundance and activities than unsaturated sediments sampled from the same borehole, the fine-textured lacustrine sediment had higher microbial numbers and activities than the coarse-textured fluvial sands, and the paleosol samples did not have higher biomass and activities relative to the other sediments. The results of this study expand the subsurface microbiology database to include information from an environment very different from those previously studied.  相似文献   

2.
Numbers and activities of microorganisms were measured in the vadose zones of three arid and semiarid areas of the western United States, and the influence of water availability was determined. These low-moisture environments have vadose zones that are commonly hundreds of meters thick. The specific sampling locations chosen were on or near U.S. Department of Energy facilities: the Nevada Test Site (NTS), the Idaho National Engineering Laboratory (INEL), and the Hanford Site (HS) in southcentral Washington State. Most of the sampling locations were uncontaminated, but geologically representative of nearby locations with storage and/or leakage of waste compounds in the vadose zone. Lithologies of samples included volcanic tuff, basalt, glaciofluvial and fluvial sediments, and paleosols (buried soils). Samples were collected aseptically, either by drilling bore-holes (INEL and HS), or by excavation within tunnels (NTS) and outcrop faces (paleosols near the HS). Total numbers of microorganisms were counted using direct microscopy, and numbers of culturable microorganisms were determined using plate-count methods. Desiccation-tolerant microorganisms were quantified by plate counts performed after 24 h desiccation of the samples. Mineralization of 14C-labeled glucose and acetate was quantified in samples at their ambient moisture contents, in dried samples, and in moistened samples, to test the hypothesis that water limits microbial activities in vadose zones. Total numbers of microorganisms ranged from log 4.5 to 7.1 cells g-1 dry wt. Culturable counts ranged from log <2 to 6.7 CFU g-1 dry wt, with the highest densities occurring in paleosol (buried soil) samples. Culturable cells appeared to be desiccation-tolerant in nearly all samples that had detectable viable heterotrophs. Water limited mineralization in some, but not all samples, suggesting that an inorganic nutrient or other factor may limit microbial activities in some vadose zone environments. Offprint requests to: T.L. Kieft  相似文献   

3.
Corestones of quartz diorite bedrock in the Rio Icacos watershed in Puerto Rico weather spheroidally to form concentric sets of partially weathered rock layers (referred to here as rindlets) that slowly transform to saprolite. The rindlet zone (0.2–2 m thick) is overlain by saprolite (2–8 m) topped by soil (0.5–1 m). With the objective of understanding interactions between weathering, substrate availability, and resident micro‐organisms, we made geochemical and microbiological measurements as a function of depth in 5 m of regolith (soil + saprolite). We employed direct microscopic counting of total cell densities; enumeration of culturable aerobic heterotrophs; extraction of microbial DNA for yield calculations; and biochemical tests for iron‐oxidizing bacteria. Total cell densities, which ranged from 2.5 × 106 to 1.6 × 1010 g?1 regolith, were higher than 108 g?1 at three depths: in the upper 1 m, at 2.1 m, and between 3.7 and 4.9 m, just above the rindlet zone. High proportions of inactive or unculturable cells were indicated throughout the profile by very low percentages of culturable heterotrophs (0.0004% to 0.02% of total cell densities). The observed increases in total and culturable cells and DNA yields at lower depths were not correlated with organic carbon or total iron but were correlated with moisture and HCl‐extractable iron. Biochemical tests for aerobic iron‐oxidizers were also positive at 0.15–0.6 m, at 2.1–2.4 m, and at 4.9 m depths. To interpret microbial populations within the context of weathering reactions, we developed a model for estimating growth rates of lithoautotrophs and heterotrophs based on measured substrate fluxes. The calculations and observations are consistent with a model wherein electron donor flux driving bacterial growth at the saprolite–bedrock interface is dominated by Fe(II) and where autotrophic iron‐oxidizing bacteria support the heterotrophic population and contribute to bedrock disaggregation and saprolite formation.  相似文献   

4.
Effects of Jet Fuel Spills on the Microbial Community of Soil   总被引:6,自引:2,他引:4       下载免费PDF全文
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil.  相似文献   

5.
The structure and specific characteristics of the hydrolytic microbial complexes from chestnut paleosols buried under the barrows of different ages (~4500 and ~3500 years) was compared with their modern analogue in microcosm experiments. Potential activity of the hydrolytic complex of the microbial community of the barrow paleosols was found to be higher than in the modern soil complex. The share of metabolically active cells revealed by FISH after the introduction of a growth-stimulating polysaccharide into the paleosol microcosm was 50% of the whole prokaryotic cell number. The paleosol community exhibited a more pronounced response to addition of the substrate than the modern soil community. The differences in the phylogenetic taxonomic structure of the prokaryotic metabolically active hydrolytic complex in the buried and modern soils were revealed. The hydrolytic complex of modern soil was more diverse, while the dominant hydrolytic organisms revealed in paleosols were unicellular and mycelial Actinobacteria, as well as Proteobacteria.  相似文献   

6.
Subsurface sediment samples, collected from three boreholes ranging in depths from 0.1 to 260 m, were used in substrate mineralization studies to examine the aerobic metabolic potential of microbial populations indigenous to the deep subsurface. Mineralization was measured by quantifying the amount of 14CO2 released from radiolabeled acetate, phenol, or 4‐methoxybenzoate added to subsurface sediments at 10 μg g‐1. Mineralization of the three compounds was observed in all but a few of the subsurface samples and did not decrease with depth. In addition, mineralization data collected from similar geologic formations from the different boreholes indicated that there was significant lateral continuity of microbial activity. Regression analyses were performed to determine which environmental factors were related to microbial metabolic potential. Mineralization was positively correlated with heterotrophic abundance as measured by plate counts. Other parameters that appeared to influence metabolic potential included pH and clay content.  相似文献   

7.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

8.
Aerobic granules were successfully developed at substrate N/COD ratios ranging from 5/100 to 30/100 by weight. By measuring respective respirometric activities of heterotrophic, ammonia-oxidizing, and nitrite-oxidizing bacteria, it was found that the relative abundance of nitrifying bacteria over heterotrophs in aerobic granules was closely related to the substrate N/COD ratios. Results further showed that the populations of both ammonia and nitrite oxidizers were significantly enriched with the increase of the substrate N/COD ratio, while a decreasing trend of heterotrophic population was observed in the aerobic granules. These seem to indicate that high substrate N/COD ratio favors the selection of nitrifying bacteria in the aerobic granules, while the relative activity of nitrifying population against heterotrophic population evolved until a balance between two populations was reached in the aerobic granular sludge community. Moreover, cell elemental composition was correlated with the shift in microbial populations, e.g., the enriched nitrifying population in the aerobic granules resulted in a high cell nitrogen content normalized to cell carbon content. This study provides a good insight into microbial interaction in aerobic granules.  相似文献   

9.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

10.
Viable prokaryotes have been detected in basal sediments beneath the few Northern Hemisphere glaciers that have been sampled for microbial communities. However, parallel studies have not previously been conducted in the Southern Hemisphere, and subglacial environments in general are a new and underexplored niche for microbes. Unfrozen subglacial sediments and overlying glacier ice samples collected aseptically from the Fox Glacier and Franz Josef Glacier in the Southern Alps of New Zealand now have been shown to harbor viable microbial populations. Total direct counts of 2–7 × 106 cells g–1 dry weight sediment were observed, whereas culturable aerobic heterotrophs ranged from 6–9 × 105 colony-forming units g–1 dry weight. Viable counts in the glacier ice typically were 3–4 orders of magnitude smaller than in sediment. Nitrate-reducing and ferric iron–reducing bacteria were detected in sediment samples from both glaciers, but were few or below detection limits in the ice samples. Nitrogen-fixing bacteria were detected only in the Fox Glacier sediment. Restriction fragment analysis of 16S rDNA amplified from 37 pure cultures of aerobic heterotrophs capable of growth at 4°C yielded 23 distinct groups, of which 11 were identified as -Proteobacteria. 16S rDNA sequences from representatives of these 11 groups were analyzed phylogenetically and shown to cluster with bacteria such as Polaromonas vacuolata and Rhodoferax antarcticus, or with clones obtained from permanently cold environments. Chemical analysis of sediment and ice samples revealed a dilute environment for microbial life. Nevertheless, both the sediment samples and one ice sample demonstrated substantial aerobic mineralization of 14C-acetate at 8°C, indicating that sufficient nutrients and viable psychrotolerant microbes were present to support metabolism. Unfrozen subglacial sediments may represent a significant global reservoir of biological activity with the potential to influence glacier meltwater chemistry.  相似文献   

11.
Three basic paleosol morphologies, named Type A, Type B and Type C, are described from the middle–upper Permian strata of the Moradi Formation, Tim Mersoi Basin, northern Niger. The Moradi Formation is a typical alluvial redbed succession dominated by red mudrocks with fine to coarse-grained pebbly channel sandstones and matrix-breccias. Type A paleosols are hosted by well-sorted fine to medium grained trough cross bedded and massive sandstones and preserve abundant vertical to horizontal micritic and microspar calcite tubules, interpreted as rhizoliths. Lateral variability of rhizoliths in Type A paleosols, and their close association with fluvial channel-fill sediments suggests they are the roots of grove stands of phreatophytic vegetation that grew within unstable anabranching stream systems. Type B paleosols are hosted by mudrocks and preserve well-developed ped structure, abundant micritic calcite nodules and vertically-stacked micritic calcite nodular bodies, as well as rare calcite with satin-spar texture interpreted as a pseudomorphic replacement of pedogenic gypsum. The morphology of Type B paleosols suggests they were formed in well-drained floodplain deposits on stable landforms. Type C paleosols are similar to Type B but preserve pedogenic structures indicative of soil volume expansion and contraction, as well as more abundant Stage II pedogenic carbonate nodules. The morphology of Type C paleosols suggests that they developed periodically rather than seasonally in poorly-drained deposits that nevertheless occupied a relatively stable part of the landscape such as the plains flanking ephemeral lakes or sabkhas.X-ray diffraction analysis of the < 2 μm fraction from the Moradi Formation strata indicates that paleosol phyllosilicates are composed of illite, smectite, and occasionally kaolinite and talc. Illite is likely a detrital mineral, whereas smectite and kaolinite are likely pedogenic weathering products. The presence of talc in the Moradi Formation paleosols is unusual. It is limited to paleosol horizons that also preserve evidence for pedogenic gypsum accumulation and is therefore most likely related to a pedogenic weathering process. It is possible that this talc is a relatively low-temperature (~ 50–100 °C) diagenetic alteration product of pedogenic Mg–phyllosilicates such as sepiolite.The range of morphologies, petrographic textures and mineralogy of the paleosol profiles indicates semi-arid to hyper-arid climatic setting. This paleoclimatic reconstruction is in agreement with Middle and Late Permian conceptual paleoclimate models and quantitative general circulation models. Nevertheless, and in spite of an arid climate, Moradi paleosols and their host strata also indicate a relatively shallow groundwater table. Importantly, this shallow groundwater resource undoubtedly helped to support the moderately diverse fossil vertebrate assemblage and large-stature macrophytes preserved in the Moradi Formation.  相似文献   

12.
Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P. fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles.  相似文献   

13.
Effects of oil spills on microbial heterotrophs in Antarctic soils   总被引:7,自引:2,他引:5  
Oil spillage on the moist coastal soils of the Ross Sea region of Antarctica can impact on populations of microbial heterotrophs in these soils, as determined by viable plate counts and a most probable number technique. Elevated numbers of culturable hydrocarbon degraders, bacteria and fungi were detected in surface and subsurface soils from oil-contaminated sites, compared with nearby control sites. Culturable yeasts were not detected in soil from coastal control sites, yet reached >105 organisms g-1 dry weight in contaminated soils. The presence of hydrocarbons in soils resulted in a shift in the genera of culturable filamentous fungi. Chrysosporium dominated control soils, yet Phialophora was more abundant in oil-contaminated soils. Hydrocarbon degraders are most likely bacteria; however, fungi could play a role in degradation of hydrocarbons or their metabolites. Depleted levels of nitrate detected in some contaminated soils and decreased pH may be the result of growth of hydrocarbon degraders. Numbers and diversity of culturable microbes from Antarctic soil varied depending on whether a pristine site or a human-impacted (in this case, by fuel spills) site is studied.  相似文献   

14.
Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004–2005. Over the course of the study, total dissolved solids increased by ∽10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of ∽1 × 106 cells ml−1 of culturable heterotrophs was replaced by a dense population of more than 1 × 109 cells ml−1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Late Pleistocene and early Holocene paleosols are described from construction pits and boreholes in the northern Kyonggi Bay, west coast of Korea. Thin-section petrography, chemistry, clay mineralogy and geotechnical properties of the paleosols were examined to infer relative sea-level fluctuations during the late Quaternary. Relict laminae and gradational contacts with underlying tidal rhythmites confirm that the late Pleistocene paleosol is a pedogenically altered tidal deposit. Illuvial clay coatings, rootlets and enrichment of kaolinite and chemically stable oxides indicate that pedogenesis occurred on a well-drained, stable surface during the last glacial period. Redoximorphic features, such as drab-colored root traces and sphaerosiderite, however, suggest that waterlogged conditions developed temporarily due to a rise of the water table at the end of the last glacial period. As sea level rose, an early Holocene paleosol formed in freshwater bog deposits, burying the late Pleistocene paleosol. The early Holocene paleosol has abundant sphaerosiderites and organic material. The presence of weakly developed illuvial clay coatings, oxidized siderites and pellets, however, indicates oxidizing condition associated with water-table fall occurred during the early Holocene. Despite the similarity in the degree of chemical and clay mineralogical weathering, the late Pleistocene paleosol is distinguished from its early Holocene counterpart by thicker and more abundant illuvial clay coatings, more Fe2O3 and a greater degree of consolidation. Duration of pedogenesis might be a primary cause for the difference of the pedofeatures with climate playing a secondary role. The widespread presence of similar late Pleistocene paleosols highlights its significance as a key stratigraphic marker for regional correlations along the west coast of Korea.  相似文献   

16.
In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation.  相似文献   

17.
Hot springs integrate hydrologic and geologic processes that vary over short- and long-term time scales. However, the influence of temporal hydrologic and geologic change on hot spring biodiversity is unknown. Here, we coordinated near-weekly, cross-seasonal (~140 days) geochemical and microbial community analyses of three widely studied hot springs with local precipitation data in Yellowstone National Park. One spring (‘HFS’) exhibited statistically significant, coupled microbial and geochemical variation across seasons that was associated with recent precipitation patterns. Two other spring communities, ‘CP’ and ‘DS’, exhibited minimal to no variation across seasons. Variability in the seasonal response of springs is attributed to differences in the timing and extent of aquifer recharge with oxidized near-surface water from precipitation. This influx of oxidized water is associated with changes in community composition, and in particular, the abundances of aerobic sulfide-/sulfur-oxidizers that can acidify waters. During sampling, a new spring formed after a period of heavy precipitation and its successional dynamics were also influenced by surface water recharge. Collectively, these results indicate that changes in short-term hydrology associated with precipitation can impact hot spring geochemistry and microbial biodiversity. These results point to potential susceptibility of certain hot springs and their biodiversity to sustained, longer-term hydrologic changes.  相似文献   

18.
The microbial and nematode populations associated with two plants (tomato and cabbage) inoculated with the nematophagous fungus, Pochonia chlamydosporia var. chlamydosporia or root knot nematode (Meloidogyne incognita), or both, were compared with those in unplanted controls. The dominant factor affecting culturable microbial populations was found to be the presence or absence of tomato plants. Generally microbial colony counts were lowest in unplanted soil, small increases were associated with cabbage and significantly greater numbers with tomato plants. Differences in microbial diversity (estimated from community profiles of carbon substrate utlisation, using Biolog) were observed between planted and unplanted soils, however, there were few differences between soils with either of the two plants. The presence of P. chlamydosporia was associated with a reduction in the numbers of plant parasitic nematodes (51%-78%) including the migratory ectoparasites, whereas free-living nematodes, culturable bacteria and bacterial populations assessed by Biolog were unaffected by the application of fungus.  相似文献   

19.
The aim of this study was to investigate the relationship between antimicrobial tolerance and taxonomic diversity among the culturable oxytetracycline-resistant (Ot(r)) heterotrophic bacterial population in two Belgian aquatic sites receiving wastewater either from human medicine or from aquaculture. The study of Ot(r) heterotrophs and mesophilic Aeromonas spp. allowed comparison of tolerance data at the intergenus as well as at the intragenus level. In total, 354 independently obtained Ot(r) isolates were subjected to antimicrobial tolerance testing and identified by GLC analysis of their cellular fatty acid methyl esters (FAMEs), by API 20E profiling and/or by Fluorescent Amplified Fragment Length Polymorphism (FAFLP) DNA fingerprinting. In general, Ot(r) hospital heterotrophs displayed a higher frequency (84%) of ampicillin (Amp) tolerance compared to the Ot(r) heterotrophs from the freshwater fishfarm site (22%). FAME results indicated that this effect was linked to the predominance of intrinsically ampicillin-resistant Ot(r) Aeromonas strains over representatives of Acinetobacter and Escherichia coli within the hospital strain set. Among the Ot(r) mesophilic Aeromonas strain set, the global tolerance profiles of the two sites only differed in a higher number of kanamycin (Kan) -tolerant strains (43%) for hospital aeromonads in comparison with the fishfarm aeromonads (8%). To some extent, this finding was correlated with the specific presence of Aeromonas caviae DNA hybridisation group (HG) 4. Collectively, these results suggest that the profiles for Amp and Kan tolerance observed in both sites arose from taxonomic differences in the culturable Ot(r) bacterial population at the generic or subgeneric level. In addition, our identification data also revealed that Enterobacter sp., Stenotrophomonas maltophilia, and A. veronii biovar sobria HG8 may be considered potential indicator organisms to assess microbial tolerance in various compartments of the aquatic environment.  相似文献   

20.
Culturability as an Indicator of Succession in Microbial Communities   总被引:2,自引:0,他引:2  
Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to maintenance occurs with time. Results from this work indicate that the percentage of culturable cells may be a useful method for assessing the successional state of microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号