首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A function involved in the inhibition of DNA degradation has been assigned through complementation tests to a product of region E1b of the adenovirus genome (between 4.5 and 10.5 map units). DNA degradation induced by the adenovirus type 12 (Ad12) cyt mutant H12cyt70 and the Ad5 early deletion mutant dl313 (with the deletion between 3.5 and 10.7 map units) was inhibited by coinfection with Ad5 region E1a (between 0 and 4.5 map units) mutants dl312 and hr1 and region E1b mutant hr6. The defect of inhibition of DNA degradation in Ad5 dl313 was also complemented in 293 cells. This DNase-inhibitory function does not appear to involve polypeptide IX or the 58,000-dalton polypeptide. Wild-type Ad12 induced DNA degradation in hamster embryo cells, suggesting that the DNase-inhibitory function is not expressed in these nonpermissive cells. Additional evidence suggests the involvement of a second viral product which positively influences the DNase activity and which appears to be an early function.  相似文献   

2.
3.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

4.
The adenovirus type 12 (Ad12) early region 1 (E1) gene was introduced into KB cells by using a dominant selection vector, pSV2-gpt, and over 80 Gpt+ KB cell clones were established. Three types of recombinant DNAs (gAE1A, gARC, and gABA) were constructed. They contained the AccI-H, EcoRI-C, and BamHI-A fragments, respectively, of Ad12 DNA in pSV2-gpt. Five of 50 (10%) gABA-transformed cell clones, 12 of 18 (67%) gAE1A-transformed cell clones, and 10 of 18 (56%) gARC-transformed cell clones complemented the growth of Ad5 dl312 (deletion in E1A) and were designated as Gpt+ Ad+ cell clones. In these cell clones at their early passages, recombinant genome sequences were detected in cellular DNA and were expressed. T antigen g (the E1A gene product) was detected by immunofluorescence. The Gpt+ Ad+ cell clones supported the growth of Ad5 deletion mutants in parallel with the expression of Ad12 E1A or E1A plus E1B genes. After infection of Gpt+ Ad+ cell clones with Ad5 dl312, the early genes of dl312 were efficiently transcribed, indicating the expression of the pre-early function of the Ad12 E1A gene. Two clones each from gAE1A-,gARC-, and gABA-transformed cells were subcultured for a long period to determine the stability of the transfecting DNAs. Subculture in a nonselective medium resulted in cells which lost the transfecting DNAs. Subculture in a selective medium resulted in the selection of cells which maintained the gpt gene expression but lost the Ad12 gene expression. These results indicate that the transfecting DNA is present in an unstable state in KB cells.  相似文献   

5.
Two type 5 adenovirus (Ad5) early region 1a (E1a) mutants, H5in104 and H5dl105, were impaired in viral replication and cell transformation. In addition, these mutants trans dominantly inhibited the frequency with which H5sub309, a phenotypically wild-type mutant, and H5dl520, a high-frequency transformation mutant, transformed CREF cells. Inhibition of transformation varied in proportion to the input ratio of mutant to coinfecting virus. It was found that H5in104, but not H5dl105, could not complement Ad5 E1b mutants that failed to synthesize 19- or 55-kDa E1b product. H5dl105 yielded 10-fold less virus than the wild-type did in 293 cells, which constitutively express E1a and E1b products; similar low yields were also observed with H5in104 and H5dl105 in another E1a- and E1b-expressing transformed cell line, KB16. Marker rescue and DNA sequence analyses, however, indicated that the phenotypes of H5in104 and H5dl105 were the result of their respective E1a mutations. The data presented are the first to demonstrate that mutants of animal viruses can effect dominant interference with the viral function(s) that produce cell transformation.  相似文献   

6.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

7.
Recombinants between an adenovirus type 5 (Ad5) deletion mutant and the Ad12 DNA fragment containing early region 1 (E1) were isolated from cells cotransfected with the EcoRI-C fragment of Ad12 DNA and Ad5 dl312 (deletion in E1A) DNA (rcA) and from cells cotransfected with the SalI-C fragment of Ad12 DNA and Ad5 dl312 DNA (rcB). No recombinant was isolated from cells cotransfected with Ad5 dl313 (deletion in E1B) DNA and restriction fragments of Ad12 DNA. Both rcA and rcB are defective and able to replicate in human embryo kidney (HEK) and KB cells with complementation by dl312. Both rcA and rcB formed Ad12 T antigen g, but not T antigen f, in infected HEK and KB cells. In rcA- and rcB-infected cells, Ad5 E1B and Ad12 E1A genes are transcribed. Heteroduplex and size analyses of rcA-1 or rcB-1 DNA fragments hybridized with Ad12 DNA revealed that rcA-1 DNA has a deletion between 5 and 15 map units with an insertion of a portion of Ad12 DNA (10%) and that rcB-1 DNA has a deletion between 70 and 80 map units with an insertion of a portion of Ad12 DNA (10%). The transformed cell lines, RCAY and RCBY, were established after infection of rat 3Y1 cells with rcA and rcB, respectively. Both Ad5 and Ad12 DNA sequences are contained in these cells. In RCAY cells, Ad12 T antigen g is detected, but Ad12 T antigen f is not. In RCBY cells, both Ad12 T antigen g and f are detected. Only the Ad12 E1A gene is transcribed in RCAY cells, whereas Ad5 E1B, Ad12 E1A, and Ad12 E1B genes are transcribed in RCBY cells. In soft-agar cultures, RCBY cells form large colonies, whereas RCAY cells form only tiny colonies. RCBY cells form tumors as efficiently as 12WY cells in transplanted rats. RCAY cells formed tumors inefficiently. Ad5-transformed 5WY cells do not form tumors. These observations indicate that the efficient tumor formation by RCBY cells is dependent on the expression of the Ad12 E1A and E1B genes, whereas the inefficient tumor formation by RCAY cells is due to the expression of only the Ad12 E1A gene.  相似文献   

8.
9.
A nondefective recombinant between adenovirus type 5 (Ad5) and type 12 (Ad12), rc-1 (Ad5 dl312, carrying the Ad12 E1A gene), was isolated from hamster cell foci transformed by a defective recombinant, rcB-1 (dl312, carrying the Ad12 E1 gene). The recombinant rc-1 grew in human embryo kidney and KB cells in the absence of helper and synthesized Ad12 T antigen g, the product of the E1A gene. The genome of rc-1 has a deletion between 79.9 and 82.5 map units of Ad5 dl312 DNA with an insertion of 0.1 to 5.5 map units of Ad12 DNA at the deletion site. The mRNAs of Ad12 E1A were transcribed from the Ad12 E1A promoter, and unusual RNAs were abundantly transcribed from the Ad5 E3 promoter on the opposite strand. The frequency of cell transformation with rc-1 was lower than those with Ad5 and Ad12 wild types.  相似文献   

10.
11.
We have constructed an adenovirus type 5 (Ad5) E1A mutant, dl1119/520, that produces essentially only exon 2 of the major E1A proteins. In infected primary baby rat kidney cells, this mutant induced expression of the E1B 55-kDa protein, and in infected human KB cells, it induced expression of this protein, the E2A 72-kDa protein, and hexon. In KB cells, this mutant grew substantially better than Ad5 dl312, which lacks E1A, and as well as Ad5 dl520, an E1A mutant producing only the 243-residue protein. These results suggest that exon 2 of E1A proteins on its own was able to activate gene expression. We also constructed mutants of dl1119/520, containing small deletions in regions of exon 2 that others found to be associated with effects on the properties of E1A transformants. None of these deletions destroyed gene activation completely, indicating that there may be some redundancy among sequences in exon 2 for inducing gene expression. The two deletions that decreased induction the most, residues 224 to 238 and 255 to 270, were in regions reported to be associated with the expression of a metalloprotease and with enhanced transformation, suggesting that exon 2 may regulate expression of genes governing cell growth. It is remarkable that all sections of E1A proteins, exon 1, the unique region, and exon 2, have now been found to affect gene expression.  相似文献   

12.
The adenovirus mutant Ad2ts111 has been previously shown to contain a mutation in the early region 2A gene encoding the single-stranded-DNA-binding protein that results in thermolabile replication of virus DNA and a mutation in early region 1 that causes degradation of intracellular DNA. A recombinant virus, Ad2cyt106, has been constructed which contains the Ad2ts111 early region 1 mutation and the wild-type early region 2A gene from adenovirus 5. This virus, like its parent Ad2ts111, has two temperature-independent phenotypes; first, it has the ability to cause an enhanced and unusual cytopathic effect on the host cell (cytocidal [cyt] phenotype) and second, it induces degradation of cell DNA (DNA degradation [deg] phenotype). The mutation responsible for these phenotypes is a single point mutation in the gene encoding the adenovirus early region 1B (E1B) 19,000-molecular-weight (19K) tumor antigen. This mutation causes a change from a serine to an asparagine in the 20th amino acid from the amino terminus of the protein. Three other mutants that affect the E1B 19K protein function have been examined. The mutants Ad2lp5 and Ad5dl337 have both the cytocidal and DNA degradation phenotypes (cyt deg), whereas Ad2lp3 has only the cytocidal phenotype and does not induce degradation of cell DNA (cyt deg+). Thus, the DNA degradation is not caused by the altered cell morphology. Furthermore, the mutant Ad5dl337 does not make any detectable E1B 19K protein product, suggesting that the absence of E1B 19K protein function is responsible for the mutant phenotypes. A fully functional E1B 19K protein is not absolutely required for lytic growth of adenovirus 2 in HeLa cells, and its involvement in transformation of nonpermissive cells to morphological variants is discussed.  相似文献   

13.
An E1B 58K mutant of adenovirus type 12 (Ad12), dl207, was constructed by the deletion of 852 base pairs in the E1B 58K coding region. The mutant could grow efficiently in 293E1 cells but not in HeLa, KB, or human embryo kidney (HEK) cells. Viral DNA replication of dl207 was not detected in HeLa and KB cells and was seldom detected in HEK cells. Analysis of viral DNA synthesis in vitro showed that the Ad12-DNA-protein complex replicated by using the nuclear extract from Ad12 wild-type (WT)-infected HeLa cells but not by using the nuclear extract from dl207-infected cells. In dl207-infected HeLa and KB cells, early mRNAs were detected, but late mRNAs were not detected. The mutant induced fewer transformed foci than the WT in rat 3Y1 cells. Cells transformed by dl207 could grow efficiently in fluid medium, form colonies in soft agar culture, and induce tumors in rats transplanted with the transformed cells at the same efficiency as WT-transformed cells. Tumors were induced in hamsters injected with WT virions but were not induced in hamsters injected with dl207 virions. The results indicate that the E1B 58K protein is required both for viral DNA replication in productive infection and for initiation of cell transformation, but not for maintenance of the transformed phenotype.  相似文献   

14.
Latent infection of KB cells with adeno-associated virus type 2.   总被引:10,自引:23,他引:10       下载免费PDF全文
Adeno-associated virus (AAV) is a prevalent human virus whose replication requires factors provided by a coinfecting helper virus. AAV can establish latent infections in vitro by integration of the AAV genome into cellular DNA. To study the process of integration as well as the rescue of AAV replication in latently infected cells after superinfection with a helper virus, we established a panel of independently derived latently infected cell clones. KB cells were infected with a high multiplicity of AAV in the absence of helper virus, cloned, and passaged to dilute out input AAV genomes. AAV DNA replication and protein synthesis were rescued from more than 10% of the KB cell clones after superinfection with adenovirus type 5 (Ad5) or herpes simplex virus types 1 or 2. In the absence of helper virus, there was no detectable expression of AAV-specific RNA or proteins in the latently infected cell clones. Ad5 superinfection also resulted in the production of infectious AAV in most cases. All mutant adenoviruses tested that were able to help AAV DNA replication in a coinfection were also able to rescue AAV from the latently infected cells, although one mutant, Ad5hr6, was less efficient at AAV rescue. Analysis of high-molecular-weight cellular DNA indicated that AAV sequences were integrated into the cell genome. The restriction enzyme digestion patterns of the cellular DNA were consistent with colinear integration of the AAV genome, with the viral termini present at the cell-virus junction. In addition, many of the cell lines appeared to contain head-to-tail concatemers of the AAV genome. The understanding of the integration of AAV DNA is increasingly important since AAV-based vectors have many advantages for gene transduction in vitro and in vivo.  相似文献   

15.
16.
17.
18.
19.
Transfection of a pBR322-based, recombinant plasmid, pAV2, containing the entire adeno-associated virus (AAV) type 2 genome into human 293 cells in the presence of helper adenovirus resulted in rescue and replication of AAV to yield infectious particles. We constructed mutants of pAV2 containing deletions within the AAV sequence. We describe here the phenotypes of these AAV deletion mutants. The results can be summarized as follows. Mutants (cap-) with deletions between map positions 53 and 85 did not synthesize capsid antigen or progeny single-stranded DNA but accumulated normal levels of duplex replicating form DNA. Mutants (rep-) with deletions between map positions 17 and 36 failed to rescue or replicate any AAV DNA. The rep- mutants could be complemented for replicating form DNA synthesis by a cap- mutant. This clearly demonstrates an AAV-coded replication function which is different from the capsid antigen. Other mutants (inf-) with deletions in the region between map positions 40 and 52 synthesized abundant amounts of replicating form DNA and capsid antigen but gave a low yield of infectious particles. This suggests that there may be an additional region of AAV, perhaps within the intron, which is required for efficient particle assembly. This work shows that AAV is genetically complex and expresses at least three clearly different functions.  相似文献   

20.
The early region E1b of adenovirus type 2 (Ad2) codes for two major tumor antigens of 53 and 19 kilodaltons (kd). The adenovirus lp+ locus maps within the 19-kd tumor antigen-coding region (G. Chinnadurai, Cell 33:759-766, 1983). We have now constructed a large-plaque deletion mutant (dl250) of Ad2 that has a specific lesion in the 19-kd tumor antigen-coding region. In contrast to most other Ad2 lp mutants (G. Chinnadurai, Cell 33:759-766, 1983), mutant dl250 is cytocidal (cyt) on infected KB cells, causing extensive cellular destruction. Cells infected with Ad2 wt or most of these other Ad2 lp mutants are rounded and aggregated without cell lysis (cyt+). The cyt phenotype of dl250 resembles the cyt mutants of highly oncogenic Ad12, isolated by Takemori et al. (Virology 36:575-586, 1968). By intertypic complementation analysis, we showed that the Ad12 cyt mutants indeed map within the 19-kd tumor antigen-coding region. The transforming potential of dl250 was assayed on an established rat embryo fibroblast cell line, CREF, and on primary rat embryo fibroblasts and baby rat kidney cells. On all these cells, dl250 induced transformation at greatly reduced frequency compared with wt. The cells transformed by this mutant are defective in anchorage-independent growth on soft agar. Our results suggest that the 19-kd tumor antigen (in conjunction with E1a tumor antigens) may play an important role in the maintenance of cell transformation. Since we have mapped the low-oncogenic or nononcogenic Ad12 cyt mutants within the 19-kd tumor antigen-coding region, our results further indicate that the 19-kd tumor antigen also directly or indirectly plays an important role in tumorigenesis of Ad12. Our results show that the cyt+ locus is an allele of the lp+ locus and that the cyt phenotype may be the result of mutations in specific domains of the 19-kd tumor antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号