首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant survival during flooding relies on ethanolic fermentation for energy production. The available literature indicates that the first enzyme of the ethanolic fermentation pathway, pyruvate decarboxylase (PDC), is expressed at very low levels and is likely to be rate-limiting during oxygen deprivation. The authors expressed high levels of bacterial PDC in tobacco to study the modulation of PDC activity in vivo, and assess its impact on the physiology of ethanolic fermentation and survival under oxygen stress. In contrast to leaves, wild-type normoxic roots contained considerable PDC activity, and overexpression of the bacterial PDC caused only a moderate increase in acetaldehyde and ethanol production under anoxia compared to wild-type roots. No significant lactate production could be measured at any time, making it unlikely that lactate-induced acidification (LDH/PDC pH-stat) triggers the onset of ethanol synthesis. Instead, the authors favour a model in which the flux through the pathway is regulated by substrate availability. The increased ethanolic flux in the transgenics compared to the wild-type did not enhance anoxia tolerance. On the contrary, rapid utilisation of carbohydrate reserves enhanced premature cell death in the transgenics while replenishment of carbohydrates improved survival under anoxia.  相似文献   

2.
3.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

4.
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.  相似文献   

5.
Pyruvate decarboxylase is the key enzyme in alcoholic fermentation in yeast. Two structural genes, PDC1 and PDC5 have been characterized. Deletion of either of these genes has little or no effect on the specific pyruvate decarboxylase activity, but enzyme activity is undetectable in mutants lacking both PDC1 and PDC5 (S. Hohmann and H. Cederberg, Eur. J. Biochem. 188:615-621, 1990). Here I describe PDC6, a gene structurally closely related to PDC1 and PDC5. The product of PDC6 does not seem to be required for wild-type pyruvate decarboxylase activity in glucose medium; delta pdc6 mutants have no reduced specific enzyme activity, and the PDC6 deletion did not change the phenotype or the specific enzyme activity of mutants lacking either or both of the other two structural genes. However, in cells grown in ethanol medium the PDC6 deletion caused a reduction of pyruvate decarboxylase activity. Northern (RNA) blot analysis showed that PDC6 is weakly expressed, and expression seemed to be higher during growth in ethanol medium. This behavior remained obscure since pyruvate decarboxylase catalyzes an irreversible reaction. Characterization of all combinations of PDC structural gene deletion mutants, which produce different amounts of pyruvate decarboxylase activity, showed that the enzyme is also needed for normal growth in galactose and ethanol medium and in particular for proper growth initiation of spores germinating on ethanol medium.  相似文献   

6.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

7.
Ethanolic fermentation and anoxia tolerance in four rice cultivars   总被引:1,自引:0,他引:1  
The relationship between coleoptile elongation and ethanolic fermentation was investigated in rice (Oryza sativa L.) coleoptiles of four cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress; however, the elongation of cvs Yukihikari and Nipponbare was much greater than that of cvs Leulikelash and Asahimochi. The stress did not significantly increase lactate dehydrogenase (LDH) activity or lactate concentration, but increased alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) activities, as well as ethanol concentration in the coleoptiles of all cultivars. The elevated ADH and PDC activities and ethanol concentration in cvs Yukihikari and Nipponbare were much greater than those of cvs Leulikelash and Asahimochi, suggesting that ethanolic fermentation is likely more active in cvs Yukihikari and Nipponbare than in cvs Leulikelash and Asahimochi. ATP concentration in cvs Yukihikari and Nipponbare in anoxia was also greater than that in cvs Leulikelash and Asahimochi in anoxia. The ethanol concentration in the coleoptiles was correlated with anoxia tolerance with respect to the ATP concentration and coleoptile elongation. These results suggest that the ability to increase ethanolic fermentation may be one of the determinants in anoxia tolerance of rice coleoptiles.  相似文献   

8.
Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.  相似文献   

9.
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.  相似文献   

10.
According to the Davies–Roberts hypothesis, plants primarily respond to oxygen limitation by a burst of lactate production and the resulting pH drop in the cytoplasm activates ethanolic fermentation. To evaluate this system in lettuce ( Lactuca sativa L.), seedlings were subjected to anoxia and in vitro activities of alcohol dehydrogenase (ADH, EC 1.1.1.1), pyruvate decarboxylase (PDC, EC 4.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) and concentrations of ethanol, acetaldehyde and lactate were determined in roots of the seedlings. The in vitro activities of ADH and PDC in the roots increase in anoxia, whereas no significant increase was measured in LDH activity. At 6 h, the ADH and PDC activities in the roots kept in anoxia were 2.8- and 2.9-fold greater than those in air, respectively. Ethanol and acetaldehyde in the roots accumulated rapidly in anoxia and increased 8- and 4-fold compared with those in air by 6 h, respectively. However, lactate concentration did not increase and an initial burst of lactate production was not found. Thus, ethanol and acetaldehyde production occurred without an increase in lactate synthesis. Treatments with antimycin A and salicylhydroxamic acid, which are respiratory inhibitors, to the lettuce seedlings in the presence of oxygen increased the concentrations of ethanol and acetaldehyde but not of lactate. These results suggest that ethanolic fermentation may be activated without preceding activation of lactate fermentation and may be not regulated by oxygen concentration directly.  相似文献   

11.
12.
The problem of availability of storage carbohydrates (fructans and starch) in oxygen‐deficient roots was investigated in wetland species ( Senecio aquaticus Hill., Myosotis palustris [L.] L. Em. Rchb.) and compared with related non‐wetland species ( Senecio jacobaea L., Myosotis arvensis [L.] Hill.) with respect to ethanolic fermentation (PDC activity, ethanol production).
In response to 24 h of hypoxic treatment, the pyruvate decarboxylase (PDC) activity in roots increased 4‐fold in M. arvensis and S. jacobaea , 2‐fold in S. aquaticus and only slightly in M. palustris . The rise in PDC activity was accompanied by an increase in ethanol content in the roots. The increase in ethanolic fermentation in roots of intact plants was associated with a slight increase in fructose and glucose and in a clear rise in sucrose content during the first 24‐48 h after commencement of the hypoxic treatment. Following 24 h of hypoxia, the content of fructans started to increase significantly for the duration of the experiment (9 days) in the four species. Since starch content changed only slightly during this period, the fructan:starch ratio increased under low energy availability. In the roots of flooding‐tolerant Senecio aquaticus , the ratio shifted most clearly from 2:1 in normoxia to 9:1 in hypoxia. For the roots of the two wetland species investigated, the results indicate a stronger accumulation of carbohydrates accompanied by a lower increase in PDC activity under root hypoxia, when compared with the related non‐wetland species respectively.  相似文献   

13.
Aerobic fermentation during tobacco pollen development   总被引:1,自引:0,他引:1  
  相似文献   

14.
The pyruvate-acetaldehyde-acetate (PAA) pathway has diverse roles in eukaryotes. Our previous study on acetyl-coenzyme A synthetase 1 (ACS1) in Gibberella zeae suggested that the PAA pathway is important for lipid production, which is required for perithecia maturation. In this study, we deleted all three pyruvate decarboxylase (PDC) genes, which encode enzymes that function upstream of ACS1 in the PAA pathway. Results suggest PDC1 is required for lipid accumulation in the aerial mycelia, and deletion of PDC1 resulted in highly wettable mycelia. However, the total amount of lipids in the PDC1 deletion mutants was similar to that of the wild-type strain, likely due to compensatory lipid production processes in the embedded mycelia. PDC1 was expressed both in the aerial and embedded mycelia, whereas ACS1 was observed only in the aerial mycelia in a PDC1-dependent manner. PDC1 is also involved in vegetative growth of embedded mycelia in G.?zeae, possibly through initiating the ethanol fermentation pathway. Thus, PDC1 may function as a key metabolic enzyme crucial for lipid production in the aerial mycelia, but play a different role in the embedded mycelia, where it might be involved in energy generation by ethanol fermentation.  相似文献   

15.
16.
17.
We manipulated the enzyme activity levels of the alcohol fermentation pathway, pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH) in Arabidopsis using sense and antisense overexpression of the corresponding genes (PDC1, PDC2, and ADH1). Transgenic plants were analyzed for levels of fermentation and evaluated for changes in hypoxic survival. Overexpression of either Arabidopsis PDC1 or PDC2 resulted in improved plant survival. In contrast, overexpression of Arabidopsis ADH1 had no effect on flooding survival. These results support the role of PDC as the control step in ethanol fermentation. Although ADH1 null mutants had decreased hypoxic survival, attempts to reduce the level of PDC activity enough to see an effect on plant survival met with limited success. The combination of flooding survival data and metabolite analysis allows identification of critical metabolic flux points. This information can be used to design transgenic strategies to improve hypoxic tolerance in plants.  相似文献   

18.
Lactobacillus brevis ATCC367 was engineered to express pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) genes in order to increase ethanol fermentation from biomass-derived residues. First, a Gram-positive Sarcina ventriculi PDC gene (Svpdc) was introduced into L. brevis ATCC 367 to obtain L. brevis bbc03. The SvPDC was detected by immunoblot using an SvPDC oligo peptide antiserum, but no increased ethanol was detected in L. brevis bbc03. Then, an ADH gene from L. brevis (Bradh) was cloned behind the Svpdc gene that generated a pdc/adh-coupled ethanol cassette pBBC04. The pBBC04 restored anaerobic growth and conferred ethanol production of Escheirichia coli NZN111 (a fermentative defective strain incapable of growing anaerobically). Approximately 58 kDa (SvPDC) and 28 kDa (BrADH) recombinant proteins were observed in L. brevis bbc04. These results indicated that the Gram-positive ethanol production genes can be expressed in L. brevis using a Gram-positive promoter and pTRKH2 shuttle vector. This work provides evidence that expressing Gram-positive ethanol genes in pentose utilizing L. brevis will further aid manipulation of this microbe toward biomass to ethanol production.  相似文献   

19.
Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of 14C-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.  相似文献   

20.
Bioethanol production by white rot fungus (Trametes versicolor), identified from fungal mixture in naturally decomposing wood samples, from hexoses and xylose was characterized. Results showed that T. versicolor can grow in culture, under hypoxic conditions, with various mixtures of hexoses and xylose and only xylose. Xylose was efficiently fermented to ethanol in media containing mixtures of hexoses and xylose, such as MBMC and G11XY11 media (Table?1), yielding ethanol concentrations of 20.0 and 9.02?g/l, respectively, after 354?h of hypoxic culture. Very strong correlations were found between ethanolic fermentation (alcohol dehydrogenase activity and ethanol production), sugar consumption and xylose catabolism (xylose reductase, xylitol dehydrogenase and xylulokinase activities) after 354?h in culture in MBMC medium. In a medium (G11XY11) containing a 1:1 glucose/xylose ratio, fermentation efficiency of total sugars into ethanol was 80% after 354?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号