首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although anaerobic bioremediation of chlorinated organic contaminants in the environment often requires exogenous supply of hydrogen as an electron donor, little is known about the ability of hydrogen-producing bacteria to grow in the presence of chlorinated solvents. In this study, 18 Clostridium strains including nine uncharacterized isolates originating from chlorinated solvent contaminated groundwater were tested to determine their ability to fermentatively produce hydrogen in the presence of three common chlorinated aliphatic groundwater contaminants: 1,2-dichloroethane (DCA), 1,1,2-trichloroethane (TCA), and tetrachloroethene (PCE). All strains produced hydrogen in the presence of at least 7.4 mM DCA, 2.4 mM TCA, and 0.31 mM PCE. Some strains produced hydrogen in media containing concentrations as high as 29.7 mM DCA, 9.8 mM TCA, and 1.1 mM PCE. None of the strains biotransformed chlorinated solvents under the conditions tested. Results demonstrate that many Clostridium species are chlorinated solvent tolerant, producing hydrogen even in the presence of high concentrations of DCA, TCA, and PCE. These findings have important implications for bioremediation of contaminated soil and groundwater.  相似文献   

2.
Perchlorate (ClO4 ?) has been detected in many drinking water supplies in the United States, including the Las Vegas Wash and Lake Mead, Nevada. These locations are highly contaminated and contribute perchlorate to Lake Mead and the Colorado River system. Essential elements for perchlorate bioremediation at these locations were examined, including the presence of perchlorate-reducing bacteria (PRB), sufficient electron donors, occurrence of competing electron acceptors, and ability of PRB to utilize a variety of electron donors. Enumeration of PRB was performed anoxically using most probable number (MPN). Values ranged from ≤20 to 230 PRB/100 ml or ≤20 to ≥ 1.6× 105 PRB/g for Lake Mead water samples and Las Vegas Wash sediments, respectively. 16S rRNA sequences revealed that isolates were γ -proteobacteria, Aeromonas, Dechlorosoma, Rahnella and Shewanella. A screening of potential electron donors using BIOLOGTM demonstrated that all isolates were capable of metabolic versatility. Measurements of total organic carbon (TOC), nitrate and dissolved oxygen (DO) indicated limited presence of electron donor at all sites, whereas the electron acceptors varied throughout the Wash and Lake Mead. The persistence of perchlorate in the sites is attributed to lack of available electron donor and/or the presence of competing electron acceptors. A location has been identified where perchlorate biodegradation could be implemented thereby halting the transport of perchlorate to Lake Mead and the Colorado River.  相似文献   

3.
Perchlorate (ClO4-) has been detected in many drinking water supplies in the United States, including the Las Vegas Wash and Lake Mead, Nevada. These locations are highly contaminated and contribute perchlorate to Lake Mead and the Colorado River system. Essential elements for perchlorate bioremediation at these locations were examined, including the presence of perchlorate-reducing bacteria (PRB), sufficient electron donors, occurrence of competing electron acceptors, and ability of PRB to utilize a variety of electron donors. Enumeration of PRB was performed anoxically using most probable number (MPN). Values ranged from ≤20 to 230 PRB/100 ml or ≤20 to ≥ 1.6× 105 PRB/g for Lake Mead water samples and Las Vegas Wash sediments, respectively. 16S rRNA sequences revealed that isolates were γ -proteobacteria, Aeromonas, Dechlorosoma, Rahnella and Shewanella. A screening of potential electron donors using BIOLOGTM demonstrated that all isolates were capable of metabolic versatility. Measurements of total organic carbon (TOC), nitrate and dissolved oxygen (DO) indicated limited presence of electron donor at all sites, whereas the electron acceptors varied throughout the Wash and Lake Mead. The persistence of perchlorate in the sites is attributed to lack of available electron donor and/or the presence of competing electron acceptors. A location has been identified where perchlorate biodegradation could be implemented thereby halting the transport of perchlorate to Lake Mead and the Colorado River.  相似文献   

4.
Two tetrachlorethene (PCE)-dechlorinating populations, designated strains BB1 and BRS1, were isolated from pristine river sediment and chloroethene-contaminated aquifer material, respectively. PCE-to-cis-1,2-dichloroethene-dechlorinating activity could be transferred in defined basal salts medium with acetate as the electron donor and PCE as the electron acceptor. Taxonomic analysis based on 16S rRNA gene sequencing placed both isolates within the Desulfuromonas cluster in the delta subdivision of the Proteobacteria. PCE was dechlorinated at rates of at least 139 nmol min(-1) mg of protein(-1) at pH values between 7.0 and 7.5 and temperatures between 25 and 30 degrees C. Dechlorination also occurred at 10 degrees C. The electron donors that supported dechlorination included acetate, lactate, pyruvate, succinate, malate, and fumarate but not hydrogen, formate, ethanol, propionate, or sulfide. Growth occurred with malate or fumarate alone, whereas oxidation of the other electron donors depended strictly on the presence of fumarate, malate, ferric iron, sulfur, PCE, or TCE as an electron acceptor. Nitrate, sulfate, sulfite, thiosulfate, and other chlorinated compounds were not used as electron acceptors. Sulfite had a strong inhibitory effect on growth and dechlorination. Alternate electron acceptors (e.g., fumarate or ferric iron) did not inhibit PCE dechlorination and were consumed concomitantly. The putative fumarate, PCE, and ferric iron reductases were induced by their respective substrates and were not constitutively present. Sulfide was required for growth. Both strains tolerated high concentrations of PCE, and dechlorination occurred in the presence of free-phase PCE (dense non-aqueous-phase liquids). Repeated growth with acetate and fumarate as substrates yielded a BB1 variant that had lost the ability to dechlorinate PCE. Due to the 16S rRNA gene sequence differences with the closest relatives and the unique phenotypic characteristics, we propose that the new isolates are members of a new species, Desulfuromonas michiganensis, within the Desulfuromonas cluster of the Geobacteraceae.  相似文献   

5.
A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.  相似文献   

6.
A novel hollow-fiber membrane remediation technology developed in our laboratory for hydrogen delivery to the subsurface was shown to support the dechlorination of perchloroethene (PCE) to cis-dichloroethene. In previous research, the presence of nitrate or sulfate has been observed to inhibit biological reductive dechlorination. In this study hollow-fiber membranes were used to supply hydrogen to a mixed culture to investigate whether adequate hydrogen could be added to support dechlorination in the presence of alternative electron acceptors. By continuously supplying hydrogen through the membrane, the hydrogen concentrations within the reactor were maintained well above the hydrogen thresholds reported to sustain reductive dechlorination. It was hypothesized that by preventing nitrate and sulfate reducers from decreasing hydrogen concentrations to below the dehalorespirer threshold, the inhibition of PCE dechlorination by nitrate and sulfate might be avoided and dechlorination could be stimulated more effectively. Enough membrane-fed hydrogen was supplied to completely degrade the alternative electron acceptors present and initiate dechlorination. Nevertheless, nitrate and sulfate inhibited dechlorinating activity even when hydrogen was not limiting. This suggests that competition for hydrogen was not responsible for the observed inhibition. Subsequent microcosm experiments demonstrated that the denitrification intermediate nitrous oxide was inhibitory at 13 µM.  相似文献   

7.
Chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants. One approach that has been used to manage these contaminants is in situ bioremediation, where an electron donor is added to contaminated groundwater to stimulate indigenous bacteria to degrade the chlorinated compounds. A technique that is increasingly being used to supply electron donor to the subsurface involves application of a commercial product with the trade name Hydrogen Release Compound (HRC). HRC is a viscous fluid that releases lactic acid, which subsequently is metabolized to provide molecular hydrogen as an electron donor. This study investigates application of HRC to remediate a site contaminated with TCE. A user-defined dual-Monod biodegradation reaction module was developed for the RT3D-reactive transport code to simulate in situ biodegradation of TCE by reductive dehalogenation stimulated by release of molecular hydrogen in the subsurface as a result of HRC injection. The model was used to show how a remediation system using HRC to stimulate reductive dehalogenation could be designed, and how mixing, as quantified by hydraulic conductivity and dispersivity, impacts the system design.  相似文献   

8.
We used geochemical analyses of groundwater and laboratory-incubated microcosms to investigate the physiological responses of naturally occurring microorganisms to coal-tar-waste constituents in a contaminated aquifer. Waters were sampled from wells along a natural hydrologic gradient extending from uncontaminated (1 well) into contaminated (3 wells) zones. Groundwater analyses determined the concentrations of carbon and energy sources (pollutants or total organic carbon), final electron acceptors (oxygen, nitrate, sulfate), and metabolic byproducts (dissolved inorganic carbon [DIC], alkalinity, methane, ferrous iron, sulfide, Mn2+). In the contaminated zone of the study site, concentrations of methane, hydrogen, alkalinity, and DIC were enhanced, while dissolved oxygen and nitrate were depleted. Field-initiated biodegradation assays using headspace-free serum bottle microcosms filled with groundwater examined metabolism of the ambient organic contaminants (naphthalene, 2-methylnaphthalene, benzothiophene, and indene) by the native microbial communities. Unamended microcosms from the contaminated zone demonstrated the simultaneous degradation of several coal-tar-waste constituents at the in situ temperature (10°C). Lag phases prior to the onset of biodegradation indicated the prevalence of both aerobic and anaerobic conditions in situ. Electron acceptor-amended microcosms from the most contaminated well waters demonstrated only aerobic naphthalene degradation. Collectively, the geochemical and microbial evidence show that biodegradation of coal-tar-waste constituents occurs via both aerobic and anaerobic terminal electron accepting processes at this site.  相似文献   

9.
Flow-through aquifer columns were used to investigate the feasibility of adding sulfate, EDTA–Fe(III) or nitrate to enhance the biodegradation of BTEX and ethanol mixtures. The rapid biodegradation of ethanol near the inlet depleted the influent dissolved oxygen (8 mg l-1), stimulated methanogenesis, and decreased BTEX biodegradation efficiencies from >99% in the absence of ethanol to an average of 32% for benzene, 49% for toluene, 77% for ethylbenzene, and about 30% for xylenes. The addition of sulfate, EDTA–Fe(III) or nitrate suppressed methanogenesis and significantly increased BTEX biodegradation efficiencies. Nevertheless, occasional clogging was experienced by the column augmented with EDTA–Fe(III) due to iron precipitation. Enhanced benzene biodegradation (>70% in all biostimulated columns) is noteworthy because benzene is often recalcitrant under anaerobic conditions. Influent dissolved oxygen apparently played a critical role because no significant benzene biotransformation was observed after oxygen was purged out of the influent media. The addition of anaerobic electron acceptors could enhance BTEX biodegradation not only by facilitating their anaerobic biodegradation but also by accelerating the mineralization of ethanol or other substrates that are labile under anaerobic conditions. This would alleviate the biochemical oxygen demand (BOD) and increase the likelihood that entraining oxygen would be used for the biotransformation of residual BTEX.  相似文献   

10.
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen (aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions. Received 08 November 1995/ Accepted in revised form 09 June 1996  相似文献   

11.
A strictly anaerobic bacterium was isolated from tetrachloroethene (PCE)-to-ethene dechlorinating microcosms established with river sediment without prior exposure to chlorinated solvents. The isolation procedure included the addition of 2-bromoethanesulfonate to select against methanogenic archaea, >50 consecutive 1-2% (v/v) transfers to reduced mineral salts medium amended with trichloroethene (TCE), acetate, and hydrogen, the addition of ampicillin, and the dilution-to-extinction principle. Culture-dependent and 16S rRNA gene-targeted approaches suggested culture purity. Microscopic examination revealed a homogeneous culture of an organism with a distinct, disc-shaped morphology. The isolate shared >99% 16S rRNA gene sequence similarity with members of the Pinellas group of the Dehalococcoides cluster, and was designated Dehalococcoides sp. strain FL2. Strain FL2 could be propagated with TCE, cis-1,2-dichloroethene (cis-DCE), or trans-DCE as the electron acceptors, acetate as the carbon source, and hydrogen as the electron donor in defined, completely synthetic medium. No other growth-supporting redox couples were identified. Trichloroethene, cis-DCE and trans-DCE were dechlorinated at rates of 27.5, 30.4 and 18.8 micromol l-1 day-1 respectively. Quantitative real-time polymerase chain reaction (PCR) with a fluorescently labelled linear hybridization probe confirmed growth with these electron acceptors, and suggested that strain FL2 captures energy from both the TCE-to-cis-DCE and 1,2-DCE-to-VC dechlorination steps. Tetrachloroethene and vinyl chloride (VC) were slowly and cometabolically dechlorinated in the presence of a growth-supporting chloroethene, but ethene formation was incomplete, even after prolonged incubation. At room temperature, strain FL2 grew with a doubling time of 2.4 days, and yielded 166.1+/-10.2 mg of protein per mole of chloride released. In the presence of excess electron acceptor, strain FL2 consumed hydrogen to a concentration of 0.061+/-0.016 nM. Dechlorination ceased following the addition of 0.5 mM sulfite, whereas sulfate (10 mM) and nitrate (5 mM) had no inhibitory effects.  相似文献   

12.
Chen S  Gong W  Mei G  Han W 《Bioresource technology》2011,102(22):10772-10775
Biodegradation behavior and kinetics of ethylthionocarbamate under nitrate, sulfate and ferric reducing conditions by mixed cultures enriched from the anaerobic digester sludge was investigated. The results showed that ethylthionocarbamate could be degraded independently by the mixed cultures coupled to nitrate, sulfate, and ferric reduction, and meanwhile, nitrite, sulfide, and ferrous were accumulated as a result of nitrate, sulfate and ferric reduction, respectively. Ferric was a more favorable terminal electron acceptor compared to nitrate and sulfate. The order of the electron acceptors with decreasing biodegradation rates of the ethylthionocarbamate was: ferric>nitrate>sulfate, and the corresponding maximum biodegradation rate was 7.240, 6.267, and 4.602 mg/(L·d), respectively. The anaerobic biodegradation of ethylthionocarbamate under various electron acceptor conditions can be accurately described by first order exponential decay kinetics.  相似文献   

13.
A bacterial isolate, designated strain SZ, was obtained from noncontaminated creek sediment microcosms based on its ability to derive energy from acetate oxidation coupled to tetrachloroethene (PCE)-to-cis-1,2-dichloroethene (cis-DCE) dechlorination (i.e., chlororespiration). Hydrogen and pyruvate served as alternate electron donors for strain SZ, and the range of electron acceptors included (reduced products are given in brackets) PCE and trichloroethene [cis-DCE], nitrate [ammonium], fumarate [succinate], Fe(III) [Fe(II)], malate [succinate], Mn(IV) [Mn(II)], U(VI) [U(IV)], and elemental sulfur [sulfide]. PCE and soluble Fe(III) (as ferric citrate) were reduced at rates of 56.5 and 164 nmol min(-1) mg of protein(-1), respectively, with acetate as the electron donor. Alternate electron acceptors, such as U(VI) and nitrate, did not inhibit PCE dechlorination and were consumed concomitantly. With PCE, Fe(III) (as ferric citrate), and nitrate as electron acceptors, H(2) was consumed to threshold concentrations of 0.08 +/- 0.03 nM, 0.16 +/- 0.07 nM, and 0.5 +/- 0.06 nM, respectively, and acetate was consumed to 3.0 +/- 2.1 nM, 1.2 +/- 0.5 nM, and 3.6 +/- 0.25 nM, respectively. Apparently, electron acceptor-specific acetate consumption threshold concentrations exist, suggesting that similar to the hydrogen threshold model, the measurement of acetate threshold concentrations offers an additional diagnostic tool to delineate terminal electron-accepting processes in anaerobic subsurface environments. Genetic and phenotypic analyses classify strain SZ as the type strain of the new species, Geobacter lovleyi sp. nov., with Geobacter (formerly Trichlorobacter) thiogenes as the closest relative. Furthermore, the analysis of 16S rRNA gene sequences recovered from PCE-dechlorinating consortia and chloroethene-contaminated subsurface environments suggests that Geobacter lovleyi belongs to a distinct, dechlorinating clade within the metal-reducing Geobacter group. Substrate versatility, consumption of electron donors to low threshold concentrations, and simultaneous reduction of electron acceptors suggest that strain SZ-type organisms have desirable characteristics for bioremediation applications.  相似文献   

14.
Numerous studies presented in the general literature have shown that the key mechanism affecting the rate and extent of migration of a contaminant plume is biodegradation since it removes contaminant mass and reduces average plume concentrations. This paper attempts to address the importance of biodegradation for fuel and chlorinated solvent plumes and to present a comprehensive review of rates of biodegradation obtained from field and laboratory studies. Data from approximately 280 studies are statistically analyzed to determine ranges of biodegradation rates for various contaminants under different redox conditions. A review of 133 studies for fuel hydrocarbons has yielded first-order biodegradation coefficients up to 0.445 day-1 under aerobic conditions and up to 0.522-1 under anaerobic conditions in 90% of the cases. A median rate constant for benzene of 0.3% day-1 was estimated from all studies, while those for toluene, ethylbenzene, and xylenes were estimated to be 4, 0.3, and 0.4% day-1, respectively. On the other hand, data from 138 studies with chlorinated solvents show that the less chlorinated compounds biodegrade in the 90% of the cases with rate constants lower than 1.35 day-1 under aerobic conditions and that highly chlorinated compounds biodegrade with decay coefficients up to 1.28 day-1 in 90% of the anoxic experiments. Median decay coefficients derived from all studies were 4.9, 0.07, 0.42, 0.86, 1.02, 0.44, and 4.7 day-1 for carbon tetrachloride, dichloroethane (DCA), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), trichloroethane (TCA), trichloroethene (TCE), and vinyl chloride, respectively. The rate constants presented in this study can be used in screening and modeling studies and to guide the assessment of natural attenuation as a viable remedial technology at contaminated sites. represent a compilation of available literature data.  相似文献   

15.
16.
The potential to enhance the anaerobic biodegradation of nonylphenol ethoxylates (NPEOs) by introducing additional sulfate or nitrate as electron acceptor was investigated. The results showed that adding nitrate or sulfate could significantly enhance the anaerobic biodegradation of NPEOs and alleviate the accumulation of their estrogenic intermediates. However, these terminal electron acceptors had no influence on the component of the anaerobic biodegradation products of NPEOs. To the best of our knowledge, it is the first report of the enhancement of anaerobic biodegradation of NPEOs by introducing additional terminal electron acceptor with relatively high redox potential. These observations have significant environmental implications in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

17.
A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 micromol liter(-1)day(-1), and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (K(S)) for VC was 5.8 microM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30 degrees C, and negligible dechlorination occurred at 4 and 35 degrees C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H(2) as electron donor. VC-dechlorinating cultures consumed H(2) to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.  相似文献   

18.
Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization.  相似文献   

19.
Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization.  相似文献   

20.
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 microm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 degrees C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H(2), formate, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H(2)) are oxidized to acetate and CO(2). When L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 micromol of chloride released. min(-1). mg of protein(-1)). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号