首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Arbuscular mycorrhiza (AM) fungi form nutrient‐acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM‐defective mutants via a microscopic screen of an ethyl methanesulfonate‐mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild‐type‐like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.  相似文献   

2.
3.
4.
In the symbiotic association of plants and arbuscular mycorrhizal (AM) fungi, the fungal symbiont resides in the root cortical cells where it delivers mineral nutrients to its plant host through branched hyphae called arbuscules. Here, we report a Medicago truncatula mutant, stunted arbuscule (str), in which arbuscule development is impaired and AM symbiosis fails. In contrast with legume symbiosis mutants reported previously, str shows a wild-type nodulation phenotype. STR was identified by positional cloning and encodes a half-size ATP binding cassette (ABC) transporter of a subfamily (ABCG) whose roles in plants are largely unknown. STR is a representative of a novel clade in the ABCG subfamily, and its orthologs are highly conserved throughout the vascular plants but absent from Arabidopsis thaliana. The STR clade is unusual in that it lacks the taxon-specific diversification that is typical of the ABCG gene family. This distinct phylogenetic profile enabled the identification of a second AM symbiosis-induced half-transporter, STR2. Silencing of STR2 by RNA interference results in a stunted arbuscule phenotype identical to that of str. STR and STR2 are coexpressed constitutively in the vascular tissue, and expression is induced in cortical cells containing arbuscules. STR heterodimerizes with STR2, and the resulting transporter is located in the peri-arbuscular membrane where its activity is required for arbuscule development and consequently a functional AM symbiosis.  相似文献   

5.
Arbuscular mycorrhiza: the mother of plant root endosymbioses   总被引:9,自引:0,他引:9  
Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.  相似文献   

6.
Most land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi to enhance uptake of mineral nutrients, particularly phosphate (Pi) and nitrogen (N), from the soil. It is established that transport of Pi from interfacial apoplast into plant cells depends on the H+ gradient generated by the H+-ATPase located on the periarbuscular membrane (PAM); however, little evidence regarding the potential link between mycorrhizal N transport and H+-ATPase activity is available to date. Here, we report that a PAM-localized tomato H+-ATPase, SlHA8, is indispensable for arbuscule development and mycorrhizal P and N uptake. Knockout of SlHA8 resulted in truncated arbuscule morphology, reduced shoot P and N accumulation, and decreased H+-ATPase activity and acidification of apoplastic spaces in arbusculated cells. Overexpression of SlHA8 in tomato promoted both P and N uptake, and increased total colonization level, but did not affect arbuscule morphology. Heterogeneous expression of SlHA8 in the rice osha1 mutant could fully complement its defects in arbuscule development and mycorrhizal P and N uptake. Our results propose a pivotal role of the SlHA8 in energizing both the symbiotic P and N transport, and highlight the evolutionary conservation of the AM-specific H+-ATPase orthologs in maintaining AM symbiosis across different mycorrhizal plant species.  相似文献   

7.
Arbuscules are the central structures of the symbiotic association between terrestrial plants and arbuscular mycorrhizal (AM) fungi. However, arbuscules are also ephemeral structures, and following development, these structures are soon digested and ultimately disappear. Currently, little is known regarding the mechanism underlying the digestion of senescent arbuscules. Here, biochemical and functional analyses were integrated to test the hypothesis that a purple acid phosphatase, GmPAP33, controls the hydrolysis of phospholipids during arbuscule degeneration. The expression of GmPAP33 was enhanced by AM fungal inoculation independent of the P conditions in soybean roots. Promoter‐β‐glucuronidase (GUS) reporter assays revealed that the expression of GmPAP33 was mainly localized to arbuscule‐containing cells during symbiosis. The recombinant GmPAP33 exhibited high hydrolytic activity towards phospholipids, phosphatidylcholine, and phosphatidic acid. Furthermore, soybean plants overexpressing GmPAP33 exhibited increased percentages of large arbuscules and improved yield and P content compared with wild‐type plants when inoculated with AM fungi. Mycorrhizal RNAi plants had high phospholipid levels and a large percentage of small arbuscules. These results in combination with the subcellular localization of GmPAP33 at the plasma membrane indicate that GmPAP33 participates in arbuscule degeneration during AM symbiosis via involvement in phospholipid hydrolysis.  相似文献   

8.
9.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

10.
The regulation of the arbuscular mycorrhizal (AM) symbiosis is largely under the control of a genetic programme of the plant host. This programme includes a common symbiosis signalling pathway that is shared with the root nodule symbiosis. Whereas this common pathway has been investigated in detail, little is known about the mycorrhiza-specific regulatory steps upstream and downstream of the common pathway. To get further insight in the regulation of the AM symbiosis, a transposon-mutagenized population of Petunia hybrida was screened for mutants with defects in AM development. Here, we describe a petunia mutant, penetration and arbuscule morphogenesis1 (pam1), which is characterized by a strong decrease in colonization by three different AM fungi. Penetrating hyphae are frequently aborted in epidermal cells. Occasionally the fungus can progress to the cortex, but fails to develop arbuscules. The resulting hyphal colonization of the cortex in mutant plants does not support symbiotic acquisition of phosphate and copper by the plant. Expression analysis of three petunia orthologues of the common SYM genes LjPOLLUX, LjSYMRK and MtDMI3 indicates that pam1 is not mutated in these genes. We conclude that the PAM1 gene may play a specific role in intracellular accommodation and morphogenesis of the fungal endosymbiont.  相似文献   

11.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

12.
During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter, PT4, is required for symbiotic Pi transport, and in pt4, symbiotic Pi transport fails, arbuscules degenerate prematurely, and the symbiosis is not maintained. Premature arbuscule degeneration (PAD) is suppressed when pt4 mutants are nitrogen-deprived, possibly the result of compensation by PT8, a second AM-induced Pi transporter. However, PAD is also suppressed in nitrogen-starved pt4 pt8 double mutants, negating this hypothesis and furthermore indicating that in this condition, neither of these symbiotic Pi transporters is required for symbiosis. In M. truncatula, three AMT2 family ammonium transporters are induced during AM symbiosis. To test the hypothesis that suppression of PAD involves AMT2 transporters, we analyzed double and triple Pi and ammonium transporter mutants. ATM2;3 but not AMT2;4 was required for suppression of PAD in pt4, while AMT2;4, but not AMT2;3, complemented growth of a yeast ammonium transporter mutant. In summary, arbuscule life span is influenced by PT4 and ATM2;3, and their relative importance varies with the nitrogen status of the plant.  相似文献   

13.
The role of the Lotus japonicus LjSym4 gene during the symbiotic interaction with Mesorhizobium loti and arbuscular mycorrhizal (AM) fungi was analyzed with two mutant alleles conferring phenotypes of different strength. Ljsym4-1 and Ljsym4-2 mutants do not form nodules with M. loti. Normal root hair curling and infection threads are not observed, while a nodC-dependent deformation of root hair tips indicates that nodulation factors are still perceived by Ljsym4 mutants. Fungal infection attempts on the mutants generally abort within the epidermis, but Ljsym4-1 mutants allow rare, successful, infection events, leading to delayed arbuscule formation. On roots of mutants homozygous for the Ljsym4-2 allele, arbuscule formation was never observed upon inoculation with either of the two AM fungi, Glomus intraradices or Gigaspora margarita. The strategy of epidermal penetration by G. margarita was identical for Ljsym4-2 mutants and the parental line, with appressoria, hyphae growing between two epidermal cells, penetration of epidermal cells through their anticlinal wall. These observations define a novel, genetically controlled step in AM colonization. Although rhizobia penetrate the tip of root hairs and AM fungi access an entry site near the base of epidermal cells, the LjSym4 gene is necessary for the appropriate response of this cell type to both microsymbionts. We propose that LjSym4 is required for the initiation or coordinated expression of the host plant cell's accommodation program, allowing the passage of both microsymbionts through the epidermis layer.  相似文献   

14.
The role of abscisic acid (ABA) during the establishment of the arbuscular mycorrhiza (AM) was studied using ABA sitiens tomato (Lycopersicon esculentum) mutants with reduced ABA concentrations. Sitiens plants and wild-type (WT) plants were colonized by Glomus intraradices. Trypan blue and alkaline phosphatase histochemical staining procedures were used to determine both root colonization and fungal efficiency. Exogenous ABA and silver thiosulfate (STS) were applied to establish the role of ABA and putative antagonistic cross-talk between ABA and ethylene during AM formation, respectively. Sitiens plants were less susceptible to the AM fungus than WT plants. Microscopic observations and arbuscule quantification showed differences in arbuscule morphology between WT and sitiens plants. Both ABA and STS increased susceptibility to the AM fungus in WT and sitiens plants. Fungal alkaline phosphate activity in sitiens mutants was completely restored by ABA application. * The results demonstrate that ABA contributes to the susceptibility of tomato to infection by AM fungi, and that it seems to play an important role in the development of the complete arbuscule and its functionality. Ethylene perception is crucial to AM regulation, and the impairment of mycorrhiza development in ABA-deficient plants is at least partly attributable to ethylene.  相似文献   

15.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   

16.
Arbuscules are the core structures of arbuscular mycorrhizae (AM), and arbuscule development is regulated by environmental stress, e.g., low pH. Recent studies indicate that lipid transfer from plants is essential for AM fungal colonization; however, the role of lipid transfer in arbuscule formation and the dynamics of lipid accumulation in arbuscules under low pH stress are far from well understood. In the symbiosis of tomato and Rhizophagus intraradices under contrasting pH conditions (pH 4.5 vs. pH 6.5), we investigated arbuscule formation, nutrient uptake, alkaline phosphatase activity and lipid accumulation; examined the gene expression involved in phosphate transport, lipid biosynthesis and transfer and sugar metabolism; and visualized the lipid dynamics in arbuscules. Low pH greatly inhibited arbuscule formation, in parallel with reduced phospholipid fatty acids accumulation in AM fungus and decreased P uptake. This reduction was supported by the decreased expression of plant genes encoding lipid biosynthesis and transfer. More degenerating arbuscules were observed under low pH conditions, and neutral lipid fatty acids accumulated only in degenerating arbuscules. These data reveal that, under low pH stress, reduced lipid transfer from hosts to AM fungi is responsible for the inhibited arbuscule formation.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi form an intimate symbiosis with roots of more than 80% of land plants without eliciting a significant defense response, and how they do so is yet to be determined. Typically, plants mount a defense response upon sensing chitin in fungal walls, and to counteract this response, plant-pathogenic fungi secrete small effector proteins with chitin-binding LysM domains. In the AM fungus, Rhizophagus irregularis, a small, putatively-secreted LysM protein, which we refer to as RiSLM, is among the most highly expressed effector-like proteins during symbiosis. Here, we show that RiSLM expression is reduced during non-functional symbiosis with Medicago mutants, mtpt4-2 and vapyrin. We demonstrate that RiSLM can bind to both chitin and chitosan, and we model the protein-ligand interaction to identify possible binding sites. Finally, we have identified RiSLM homologs in five published R. irregularis isolate genomes and demonstrate that the gene is subject to a high rate of evolution and is experiencing positive selection, while still conserving putative function. Our results present important clues for elucidating a role for a LysM effector, RiSLM, in AM symbiosis.  相似文献   

18.
Arbuscular mycorrhizae formed between more than 80% of land plants and arbuscular mycorrhizal (AM) fungi represent the most widespread symbiosis on the earth. AM fungi facilitate the uptake of soil nutrients, especially phosphate, by plants, and in return obtain carbohydrates from hosts. Apocarotenoids, oxidative cleavage products of carotenoids, have been found to play a critical role in the establishment of AM symbiosis. Strigolactones previously isolated as seed-germination stimulants for root parasitic weeds act as a chemical signal for AM fungi during presymbiotic stages. Stimulation of carotenoid metabolism, leading to massive accumulation of mycorradicin and cyclohexenone derivatives, occurs during root colonization by AM fungi. This review highlights research into the chemical identification of arbuscular mycorrhiza-related apocarotenoids and their role in the regulation and establishment of AM symbiosis conducted in the past 10 years.  相似文献   

19.
Plant nutrients, with the exception of nitrogen, are ultimately derived from weathering of primary minerals. Traditional theories about the role of ectomycorrhizal fungi in plant nutrition have emphasized quantitative effects on uptake and transport of dissolved nutrients. Qualitative effects of the symbiosis on the ability of plants to access organic nitrogen and phosphorus sources have also become increasingly apparent. Recent research suggests that ectomycorrhizal fungi mobilize other essential plant nutrients directly from minerals through excretion of organic acids. This enables ectomycorrhizal plants to utilize essential nutrients from insoluble mineral sources and affects nutrient cycling in forest systems.  相似文献   

20.
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein–protein interactions: an N‐terminal VAMP‐associated protein (VAP)/major sperm protein (MSP) domain and a C‐terminal ankyrin‐repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non‐plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号