首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human herpesvirus 6 (HHV-6) envelope glycoprotein gH/gL/gQ1/gQ2 complex associates with host cell CD46 as its cellular receptor. Although gB has been suggested to be involved in HHV-6 infection, its function in membrane fusion has remained unclear. Here, we have developed an HHV-6A (strain GS)and HHV-6B (strain Z29) virus-free cell-to-cell fusion assay and demonstrate that gB and the gH/gL/gQ1/gQ2 complex are the minimum components required for membrane fusion by HHV-6.  相似文献   

2.
3.
Human herpesvirus 6 is a T lymphotropic herpesvirus, long classified into variants A and B (HHV-6A and HHV-6B) based on differences in sequence and pathogenicity. Recently, however, HHV-6A and HHV-6B were reclassified as different species. Here, we isolated a neutralizing monoclonal antibody (Mab) named AgQ 1-1 that was specific for HHV-6A glycoprotein Q1 (AgQ1), and we showed that amino acid residues 494 to 497 of AgQ1 were critical for its recognition by this Mab. This region was also essential for AgQ1''s complex formation with gH, gL, and gQ2, which might be important for viral binding to the cellular receptor, CD46. In addition, amino acid residues 494 to 497 are essential for viral replication. Interestingly, this sequence corresponds to the domain on HHV-6B gQ1 that is critical for recognition by an HHV-6B-specific neutralizing Mab. Within this domain, only Q at position 496 of HHV-6A is distinct from the HHV-6B sequence; however, the mutant AgQ1(Q496E) was still clearly recognized by the Mab AgQ 1-1. Surprisingly, replacement of the adjacent amino acid, in mutant AgQ1(C495A), resulted in poor recognition by Mab AgQ 1-1, and AgQ1(C495A) could not form the gH/gL/gQ1/gQ2 complex. Furthermore, the binding ability of mutant AgQ1(L494A) with CD46 decreased, although it could form the gH/gL/gQ1/gQ2 complex and it showed clear reactivity to Mab AgQ 1-1. These data indicated that amino acid residues 494 to 497 of AgQ1 were critical for the recognition by Mab AgQ 1-1 and essential for AgQ1''s functional conformation.  相似文献   

4.
Based on genetic and antigenic differences and on their cell tropism, human herpes virus‐6 (HHV‐6) has been classified into two variants, HHV‐6A and HHV‐6B. Recently, these variants were re‐classified as two different species. The HHV‐6A glycoprotein complex, gH/gL/gQ1/gQ2 binds to its cellular receptor, CD46; however, the corresponding complex in HHV‐6B rarely binds to CD46. To determine which viral molecules in the glycoprotein complex determine HHV‐6A‐CD46 binding, each molecule of the HHV‐6A complex (i.e., gH, gL, gQ1, or gQ2) was replaced with the corresponding HHV‐6B molecule, and the ability of the replaced protein to be incorporated into the complex and the ability of the complex to bind CD46 were examined. It was found that when all four glycoproteins were expressed, they were able to form a tetrameric complex. However, a complex formed by HHV‐6A gH/gL/gQ1/gQ2 complexes replaced with HHV‐6B gQ1 or gQ2 scarcely bind CD46, whereas HHV‐6A complexes in which gH or gL was replaced with the HHV‐6B molecules did bind it. These results indicate that HHV‐6A gQ1 and gQ2 play an important role in CD46 binding.  相似文献   

5.
The human herpesvirus 6 (HHV-6) glycoprotein H (gH)-glycoprotein L (gL) complex associates with glycoprotein Q (gQ) (Y. Mori, P. Akkapaiboon, X. Yang, and K. Yamanishi, J. Virol. 77:2452-2458, 2003), and the gH-gL-gQ complex interacts with human CD46 (Y. Mori, X. Yang, P. Akkapaiboon, T. Okuno, and K. Yamanishi, J. Virol. 77:4992-4999, 2003). Here, we show that the HHV-6 U47 gene, which is a positional homolog of the human cytomegalovirus glycoprotein O (gO) gene, encodes a third component of the HHV-6 gH-gL-containing envelope complex. A monoclonal antibody (MAb) against the amino terminus of HHV-6 gO reacted in immunoblots with protein species migrating at 120 to 130 kDa and 74 to 80 kDa in lysates of HHV-6-infected cells and with a 74- to 80-kDa protein species in purified virions. The 80-kDa form of gO was coimmunoprecipitated with an anti-gH MAb, but an anti-gQ MAb, which coimmunoprecipitated gH, did not coprecipitate gO. Furthermore, the gH-gL-gO complex did not bind to human CD46, indicating that the complex was not a ligand for CD46. These findings suggested that the viral envelope contains at least two kinds of tripartite complexes, gH-gL-gQ and gH-gL-gO, and that the gH-gL-gO complex may play a role different from that of gH-gL-gQ during viral infection. This is the first report of two kinds of gH-gL complexes on the viral envelope in a member of the herpesvirus family.  相似文献   

6.
The human herpesvirus 6 (HHV-6) variant A U100 gene encodes the third component of the glycoprotein H (gH)-glycoprotein L (gL)-containing complex. Glycosidase digestion analysis showed that the U100 gene products are glycoproteins consisting of an 80-kDa protein with complex N-linked oligosaccharides and a 74-kDa protein with immature, high-mannose N-linked oligosaccharides. Based on these characteristics, we designated the U100 gene products glycoprotein Q (gQ). Only the 80-kDa form of gQ was coimmunoprecipitated with an anti-gH antibody, suggesting that the 80-kDa protein associates with the gH-gL complex in HHV-6-infected cells. Furthermore, the complex was detected in purified virions, suggesting that it may play an important role in viral entry.  相似文献   

7.
Human CD46 is a cellular receptor for human herpesvirus 6 (HHV-6). Virus entry into host cells requires a glycoprotein H (gH)-glycoprotein L (gL) complex. We show that the CD46 ectodomain blocked HHV-6 infection and bound a complex of gH-gL and the 80-kDa U100 gene product, designated glycoprotein Q, indicating that the complex is a viral ligand for CD46.  相似文献   

8.
Human herpesvirus 6 (HHV-6) is a T-cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6 variant A (HHV-6A) and HHV-6B, based on genetic, antigenic, and cell tropisms, although the homology of their entire genomic sequences is nearly 90%. The HHV-6A glycoprotein complex gH/gL/gQ1/gQ2 is a viral ligand that binds to the cellular receptor human CD46. Because gH has 94.3% amino acid identity between the variants, here we examined whether gH from one variant could complement its loss in the other. Recently, we successfully reconstituted HHV-6A from its cloned genome in a bacterial artificial chromosome (BAC) (rHHV-6ABAC). Using this system, we constructed HHV-6ABAC DNA containing the HHV-6B gH (BgH) gene instead of the HHV-6A gH (AgH) gene in Escherichia coli. Recombinant HHV-6ABAC expressing BgH (rHHV-6ABAC-BgH) was successfully reconstituted. In addition, a monoclonal antibody that blocks HHV-6B but not HHV-6A infection neutralized rHHV-6ABAC-BgH but not rHHV-6ABAC. These results indicate that HHV-6B gH can complement the function of HHV-6A gH in the viral infectious cycle.  相似文献   

9.
Human herpesvirus 6 (HHV-6) is a T cell-tropic betaherpesvirus. HHV-6 can be classified into two variants, HHV-6A and HHV-6B, based on differences in their genetic, antigenic, and growth characteristics and cell tropisms. The function of HHV-6B should be analyzed more in its life cycle, as more than 90% of people have the antibodies for HHV-6B but not HHV-6A. It has been shown that the cellular receptor for HHV-6A is human CD46 and that the viral ligand for CD46 is the envelope glycoprotein complex gH/gL/gQ1/gQ2; however, the receptor-ligand pair used by HHV-6B is still unknown. In this study, to identify the glycoprotein(s) important for HHV-6B entry, we generated monoclonal antibodies (MAbs) that inhibit infection by HHV-6B. Most of these MAbs were found to recognize gQ1, indicating that HHV-6B gQ1 is critical for virus entry. Interestingly, the recognition of gQ1 by the neutralizing MAb was enhanced by coexpression with gQ2. Moreover, gQ1 deletion or point mutants that are not recognized by the MAb could nonetheless associate with gQ2, indicating that although the MAb recognized the conformational epitope of gQ1 exposed by the gQ2 interaction, this epitope was not related to the gQ2 binding domain. Our study shows that HHV-6B gQ1 is likely a ligand for the HHV-6B receptor, and the recognition site for this MAb will be a promising target for antiviral agents.  相似文献   

10.
Human herpesvirus 6 (HHV-6) is a T lymphotropic herpes virus that is categorized into two variants, A (HHV-6A) and B (HHV-6B), on the basis of distinct genetic, immunological and biological characteristics. HHV-6 uses human CD46 as a cellular receptor. Without viral replication, HHV-6A induces cell–cell fusion between cells expressing human CD46. Some HHV-6B strains can also induce CD46-mediated cell–cell fusion. A multiple glycoprotein complex composed of glycoprotein (g) H-gL complexed with gQ1 and gQ2 has been identified, and found to be a viral ligand for the human CD46 receptor. Moreover, a novel complex consisting of gH/gL/gO, which does not associate with CD46, has also been identified. The evidence suggests that an additional receptor for HHV-6B or both variants may play a role in determining the cell tropism of this virus. Finally, cholesterol in the HHV-6 envelope and plasma membrane of the host cells plays an important role in HHV-6 entry, although how this function relates to cell–envelope fusion remains to be elucidated.  相似文献   

11.
脂筏在人类疱疹病毒6型装配中的作用   总被引:1,自引:0,他引:1  
黄红兰  李凡 《病毒学报》2008,24(4):295-299
为了探讨脂筏在人类疱疹病毒6型(HHV-6)装配中的作用,用HHV-6 GS株感染HSB2细胞,用非离子去污剂Triton X-100提取脂筏成分,利用Western blot分析HHV-6包膜糖蛋白与脂筏的相关性.并用免疫荧光双标记的方法,从分子共定位的角度研究HHV-6糖蛋白B(gB)与GPI(glycosyl-phosphatidyl inosital)锚固蛋白CD59分子以及神经节苷脂GMI(monosialotetrahexosyl ganglioside)分子之间的表达与分布关系.结果发现HHV-6包膜糖蛋白B、H、L、Q1和Q2(gB、gH、gL、gQ1和gQ2)分布在脂筏部位.激光共聚焦显微镜可观察到CD59分子及GM1均与HHV-6包膜糖蛋白B有着相同的分布,即脂筏提供HHV-6装配的平台.关于脂筏在人类疱疹病毒6型装配中的作用,这是第一次报道.  相似文献   

12.
Human herpesvirus 6 (HHV-6) employs the complement regulator CD46 (membrane cofactor protein) as a receptor for fusion and entry into target cells. Like other known herpesviruses, HHV-6 encodes multiple glycoproteins, several of which have been implicated in the entry process. In this report, we present evidence that glycoprotein H (gH) is the viral component responsible for binding to CD46. Antibodies to CD46 co-immunoprecipitated an approximately 110-kDa protein band specifically associated with HHV-6-infected cells. This protein was identified as gH by selective depletion with an anti-gH monoclonal antibody, as well as by immunoblot analysis with a rabbit hyperimmune serum directed against a gH synthetic peptide. In reciprocal experiments, a monoclonal antibody against HHV-6 gH was found to co-immunoprecipitate CD46. Studies using monoclonal antibodies directed against specific CD46 domains, as well as engineered constructs lacking defined CD46 regions, demonstrated a close correspondence between the CD46 domains involved in the interaction with gH and those previously shown to be critical for HHV-6 fusion (i.e. short consensus repeats 2 and 3).  相似文献   

13.
The genes encoding the glycoproteins H (gH) and L (gL) of human herpesvirus 7 (HHV-7) have been identified. The gH open reading frame (ORF) was 2,070 base pairs in length and encoded a predicted 690 amino-acid protein. The gH contained characteristics of a transmembrane glycoprotein including 10 consensus N-linked glycosylation sites, 12 cysteine residues, a potential amino-terminal signal sequence and a predicted transmembrane segment located near the carboxyl terminus. The gL ORF was 738 base pairs in length and encoded a predicted 246 amino-acid protein. Four possible N-glycosylation sites and 6 cysteine residues existed within gL. The predicted amino-acid sequences of the HHV-7 gH and human herpesvirus 6 variant A (HHV-6A) gH gene products exhibited 23.6% identity to each other, and those of the gL gene products had 26.0% identity. Upon in vitro translation of the gL gene, the addition of microsomal membranes resulted in two modified products with molecular weights of 32 kDa and 35 kDa from the unmodified initial translation product of 26 kDa. An amino-terminal portion of gH and the full length of gL were expressed as glutathione S-transferase fusion proteins, and these proteins were used to raise immune sera in mice. Lysates of cells infected with HHV-7 were subjected to immunoprecipitation analysis. Approximate molecular weights of 33, 37, 80 and 90 kDa polypeptides were immunoprecipitated with antibodies against the gH protein. Antibodies against the gL protein polypeptides with the same molecular weights were also precipitated, and were observed with the antibodies against the gH protein. These results suggest that HHV-7 gH and gL may form a heterodimeric complex with each other in HHV-7 infected cells, as has been reported for other herpesviruses.  相似文献   

14.
A prerequisite for understanding the molecular function of the human cytomegalovirus (HCMV) gH (UL75)-gL (UL115) complex is a detailed knowledge of the structure of this complex in its functional form, as it is present in mature virions. The gH protein is known to be a component of a 240-kDa envelope complex designated as gCIII (D. R. Gretch, B. Kari, L. Rasmussen, R. C. Gehrz, and M. F. Stinski, J. Virol. 62:875-881, 1988). However, the exact composition of the gCIII complex remains unknown. In this report, we attempted reconstitution of the gCIII complex by coexpression of gH and gL in the baculovirus expression system. Formation of recombinant gH-gL complexes of approximately 115 kDa was demonstrated; however, no higher-molecular-mass (approximately 240-kDa) recombinant gH-gL complexes were detected, suggesting that the presence of gH and gL alone is not sufficient for reconstitution of the gCIII complex. To identify other mammalian and/or HCMV factors which may be necessary for gCIII formation, immunoprecipitates of gH and gL from HCMV-infected fibroblasts and purified HCMV virions were examined. This analysis did reveal a number of coprecipitating proteins which associate either transiently or integrally with gH and gL. One coprecipitating protein of 145 kDa was shown to be an integral component of gCIII, along with gH and gL. Characterization of the 145-kDa protein demonstrates that it is structurally and antigenically unrelated to gH and gL and that it appears to be virally encoded. Together, these data indicate that the 145-kDa protein is a third novel component of the mature HCMV gH-gL complex.  相似文献   

15.
The human cytomegalovirus (HCMV) gCIII complex contains glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and glycoprotein O (gO; gpUL74). To examine how gH, gL, and gO interact within HCMV-infected cells to assemble the tripartite complex, pulse-chase experiments were performed. These analyses demonstrated that gH and gL associate by the end of the pulse period to form a disulfide dependent gH-gL complex. Subsequently, the gH-gL complex interacts with a 100-kDa precursor form of gO to form a 220-kDa precursor of the mature gH-gL-gO complex that contains a 125-kDa form of gO. The 220-kDa precursor complex (pgCIII) was sensitive to treatment with endoglycosidase H (endo H), while the mature gCIII complex was essentially resistant to digestion with this enzyme, suggesting that formation of pgCIII complex occurs in the endoplasmic reticulum (ER) and is processed to mature gH-gL-gO (gCIII) in a post-ER compartment. While the N-linked glycans on the 100-kDa form of gO were modified to endo H-resistant states as the 125-kDa gO formed, additional posttranslational modifications were detected on gO. These processing alterations were non-N-linked oligosaccharide modifications that could not be accounted for by phosphorylation or by O-glycosylation of the type sensitive to O-glycanase. Of gH, gL, gO, and the various complexes that they form, only the mature form of the complex was detectable at the infected cell membrane, as judged by surface biotinylation studies.  相似文献   

16.
Human herpesvirus 8 (HHV-8) is an oncogenic virus that enters cells by fusion of the viral and endosomal cellular membranes in a process mediated by viral surface glycoproteins. One of the cellular receptors hijacked by HHV-8 to gain access to cells is the EphA2 tyrosine kinase receptor, and the mechanistic basis of EphA2-mediated viral entry remains unclear. Using X-ray structure analysis, targeted mutagenesis, and binding studies, we here show that the HHV-8 envelope glycoprotein complex H and L (gH/gL) binds with subnanomolar affinity to EphA2 via molecular mimicry of the receptor’s cellular ligands, ephrins (Eph family receptor interacting proteins), revealing a pivotal role for the conserved gH residue E52 and the amino-terminal peptide of gL. Using FSI-FRET and cell contraction assays, we further demonstrate that the gH/gL complex also functionally mimics ephrin ligand by inducing EphA2 receptor association via its dimerization interface, thus triggering receptor signaling for cytoskeleton remodeling. These results now provide novel insight into the entry mechanism of HHV-8, opening avenues for the search of therapeutic agents that could interfere with HHV-8–related diseases.

Herpesviruses are known to hijack cellular receptors to enter cells, but this study shows that human herpesvirus 8 takes this to another level by using its envelope glycoprotein complex gH/gL to mimic the EphA2 receptor’s natural ligands, ephrins.  相似文献   

17.
K M Duus  C Grose 《Journal of virology》1996,70(12):8961-8971
Varicella-zoster virus (VZV) is an extremely cell-associated alphaherpesvirus; VZV infection is spread almost exclusively via cell membrane fusion. The envelope glycoprotein H (gH) is highly conserved among the herpesviruses. A virus-encoded chaperone, glycoprotein L (gL), associates with gH, and the gH:gL complex is required for gH maturation and membrane expression. We recently demonstrated that in the VZV system, the gH:gL complex facilitated cell membrane fusion and extensive polykaryon formation in transfected cells (K. M. Duus, C. Hatfield, and C. Grose, Virology 210:429-440, 1995). To further define the functions of the unusual VZV gL chaperone protein, we have performed a series of mutagenesis experiments with both gH and gL and analyzed the mutants by laser scanning confocal microscopy in a transfection-based fusion assay. We established the fact that immature gH exited the endoplasmic reticulum (ER) when coexpressed with either gE or gI and appeared on the cell surface in a patch pattern. A similar effect was observed on the cell surface with gH with a cytoplasmic tail mutagenized to closely resemble the vaccinia virus hemagglutinin cytoplasmic tail. Site-directed mutagenesis of the five gL cysteine residues demonstrated that four of five cysteines participated in the gL chaperone function required for proper maturation of gH. On the other hand, the same gL mutants facilitated transport of immature gH to the cell surface, where patching occurred. Studies of gL processing demonstrated that maturation did not require transport beyond the medial-Golgi; furthermore, gL was not detected in the outer cell membrane, nor was it secreted into the medium. Colocalization studies with 3,3'-dihexyloxa-cabocyanine iodide and N-(e-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-erythro-sphingosine confirmed that gL was found primarily in the ER and cis/medial-Golgi when expressed alone. When all of these data were considered, they suggested a posttranslational gH:gL regulation model whereby the gL chaperone modulated gH expression via retrograde flow from the Golgi to the ER. In this schema, mature gL returns to the ER, where it escorts immature gH from the ER to the Golgi; thereafter, mature gH is transported from the trans-Golgi to the outer cell membrane, where it acts as a major fusogen.  相似文献   

18.
Glycoprotein O (gO) is conserved among betaherpesviruses, but little is known about the maturation process of gO in human herpesvirus 6 (HHV-6). We found that HHV-6 gO maturation was accompanied by cleavage of its carboxyl terminus and required coexpression of gH and gL, which promoted the export of gO out of the endoplasmic reticulum (ER). Finally, we also found that gO was not required for HHV-6A growth in T cells.  相似文献   

19.
The entry of human cytomegalovirus (HCMV) into biologically relevant epithelial and endothelial cells involves endocytosis followed by low-pH-dependent fusion. This entry pathway is facilitated by the HCMV UL128, UL130, and UL131 proteins, which form one or more complexes with the virion envelope glycoprotein gH/gL. gH/gL/UL128-131 complexes appear to be distinct from the gH/gL/gO complex, which likely facilitates entry into fibroblasts. In order to better understand the assembly and protein-protein interactions of gH/gL/UL128-131 complexes, we generated HCMV mutants lacking UL128-131 proteins and nonreplicating adenovirus vectors expressing gH, gL, UL128, UL130, and UL131. Our results demonstrate that UL128, UL130, and UL131 can each independently assemble onto gH/gL scaffolds. However, the binding of individual UL128-131 proteins onto gH/gL can significantly affect the binding of other proteins; for example, UL128 increased the binding of both UL130 and UL131 to gH/gL. Direct interactions between gH/UL130, UL130/UL131, gL/UL128, and UL128/UL130 were also observed. The export of gH/gL complexes from the endoplasmic reticulum (ER) to the Golgi apparatus and cell surface was dramatically increased when all of UL128, UL130, and UL131 were coexpressed with gH/gL (with or without gO expression). Incorporation of gH/gL complexes into the virion envelope requires transport beyond the ER. Thus, we concluded that UL128, UL130, and UL131 must all bind simultaneously onto gH/gL for the production of complexes that can function in entry into epithelial and endothelial cells.  相似文献   

20.
人类疱疹病毒 7 型(HHV-7)的感染依赖于包膜糖蛋白在病毒生命周期的多个阶段发挥功能. 这些蛋白质可以介导病毒吸附,病毒包膜和宿主细胞膜融合以及病毒在细胞间的接触传播. 将表达 HHV-7 糖蛋白的 293T 细胞与 HHV-7 易感的SupT1 细胞共培养,检测虫荧光素酶报告基因的表达,以鉴定介导膜融合的 HHV-7 糖蛋白. 研究发现,HHV-7 糖蛋白 gB、gH、gL、gO 能介导 293T 细胞与 SupT1 细胞的融合,且融合可被抗 CD4 单抗所抑制. 结果表明,糖蛋白 gB、gH、gL、gO对于 HHV-7 引发的膜融合是必需的,其中某个蛋白质或所形成的蛋白质复合物可能是 CD4 的配体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号