首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations. For individual wild-type cells, however, Cdc42 distribution is initially asymmetrical and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different patterns of Cdc42 activation are possible in vivo, we examined S. pombe rga4∆ mutant cells, lacking the Cdc42 GTPase-activating protein (GAP) Rga4. We found that monopolar rga4∆ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4∆ daughter cells. Motivated by different hypotheses that can mathematically reproduce the unequal fate of daughter cells, we used genetic screening to identify mutants that alter the rga4∆ phenotype. We found that the unequal distribution of active Cdc42 GTPase is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP localization in maintaining consistent Cdc42 activation and growth patterns across generations.  相似文献   

2.
Kelly FD  Nurse P 《PloS one》2011,6(12):e27977
Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape.  相似文献   

3.
Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4 Delta cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a "corset" pattern, and to the nongrowing cell tips. Additionally, rga4 Delta cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth.  相似文献   

4.
Fission yeast Cdc42p, a small GTPase of the Rho family, is essential for cell proliferation and maintenance of the rod-like cell morphology. Scd1/Ral1p is a GDP-GTP exchange factor (GEF) for Cdc42p. This study and a parallel study by others establish that Gef1p is another GEF for Cdc42p. Deletions of gef1 and scd1 are synthetically lethal, generating round dead cells, and hence mimic the phenotype of cdc42 deletion. Gef1p is localized mainly to the cell division site. Scd1p is also there, but it is also detectable in other parts of the cell, including the nucleus, growing ends, and the tips of conjugation tubes. Gef1p and Scd1p form a ring structure at the cell division site, which shrinks during cytokinesis following the contraction of the actomyosin ring. Formation of the Gef1p/Scd1p ring apparently depends on the integrity of the actomyosin ring. In turn, recruitment of Cdc42p to the cell division site follows the shrinking Gef1p/Scd1p ring; the Cdc42p accumulates like a closing iris. These observations suggest that Gef1p and Scd1p may have a role in mediating between contraction of the actomyosin ring and formation of the septum, by recruiting active Cdc42p to the septation site.  相似文献   

5.
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6, another fission yeast Cdc42 GAP, shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane, forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Of note, in the absence of Rga6, the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions.  相似文献   

6.
GTPase-activating proteins for Cdc42   总被引:2,自引:0,他引:2       下载免费PDF全文
The Rho-type GTPase, Cdc42, has been implicated in a variety of functions in the yeast life cycle, including septin organization for cytokinesis, pheromone response, and haploid invasive growth. A group of proteins called GTPase-activating proteins (GAPs) catalyze the hydrolysis of GTP to GDP, thereby inactivating Cdc42. At the time this study began, there was one known GAP, Bem3, and one putative GAP, Rga1, for Cdc42. We identified another putative GAP for Cdc42 and named it Rga2 (Rho GTPase-activating protein 2). We confirmed by genetic and biochemical criteria that Rga1, Rga2, and Bem3 act as GAPs for Cdc42. A detailed characterization of Rga1, Rga2, and Bem3 suggested that they regulate different subsets of Cdc42 function. In particular, deletion of the individual GAPs conferred different phenotypes. For example, deletion of RGA1, but not RGA2 or BEM3, caused hyperinvasive growth. Furthermore, overproduction or loss of Rga1 and Rga2, but not Bem3, affected the two-hybrid interaction of Cdc42 with Ste20, a p21-activated kinase (PAK) kinase required for haploid invasive growth. These results suggest Rga1, and possibly Rga2, facilitate the interaction of Cdc42 with Ste20 to mediate signaling in the haploid invasive growth pathway. Deletion of BEM3 resulted in cells with severe morphological defects not observed in rga1Δ or rga2Δ strains. These data suggest that Bem3 and, to a lesser extent, Rga1 and Rga2 facilitate the role of Cdc42 in septin organization. Thus, it appears that the GAPs play a role in modulating specific aspects of Cdc42 function. Alternatively, the different phenotypes could reflect quantitative rather than qualitative differences in GAP activity in the mutant strains.  相似文献   

7.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

8.
Zheng XD  Lee RT  Wang YM  Lin QS  Wang Y 《The EMBO journal》2007,26(16):3760-3769
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Delta mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery.  相似文献   

9.
BACKGROUND: In the fission yeast Schizosaccharomyces pombe, cell growth takes place exclusively at both ends of the cylindrical cell. During this highly polarized growth, microtubules are responsible for the placement of the cell-end marker proteins, the Tea1-Tea4/Wsh3 complex, which recruits the Pom1 DYRK-family protein kinase. Pom1 is required for proper positioning of growth sites, and the Deltapom1 mutation brings about monopolar cell growth. RESULTS: Pom1 kinase physically interacts with Rga4, which has a GAP (GTPase-activating protein) domain for Rho-family GTPase. Genetic and biochemical evidence indicates that Rga4 functions as GAP for the Cdc42 GTPase, an evolutionarily conserved regulator of F-actin. CRIB (Cdc42/Rac interactive binding)-GFP microscopy has revealed that GTP-bound, active Cdc42 is concentrated to growing cell ends accompanied by developed F-actin structures, where the Rga4 GAP is excluded. The monopolar Deltapom1 mutant fails to eliminate Rga4 from the nongrowing cell end, resulting in monopolar distribution of GTP-Cdc42 to the growing cell end. However, mutational inactivation of Rga4 allows Cdc42 to be active at both ends of Deltapom1 cells, suggesting that mislocalization of Rga4 in the Deltapom1 mutant contributes to its monopolar phenotype. CONCLUSIONS: Pom1 kinase recruited to cell ends by the Tea1-Tea4/Wsh3 complex is essential for proper localization of a GAP for Cdc42, Rga4, which ensures bipolar localization of GTP-bound, active Cdc42. Because of the established role of Cdc42 in F-actin formation, these observations provide a new insight into how the microtubule system achieves localized formation of F-actin to generate cell polarity.  相似文献   

10.
Schizosaccharomyces pombe Rho2 GTPase regulates alpha-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2Delta cells contain more alpha-D-glucan and therefore partially suppress the thermosensitivity of mok1-664 cells, which have a defective alpha-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2-Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway.  相似文献   

11.
How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.  相似文献   

12.
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.  相似文献   

13.
Li YC  Chen CR  Chang EC 《Genetics》2000,156(3):995-1004
Ras1 GTPase is the Schizosaccharomyces pombe homolog of the mammalian Ha-Ras proto-oncoprotein. Ras1 interacts with Scd1 (aka Ral1), a presumptive guanine nucleotide exchange factor for Cdc42sp, to control organization of the cytoskeleton. In this study, we demonstrated that the scd1 deletion (scd1Delta) induced hypersensitivity to microtubule destabilizing drugs and instability of the minichromosome. Overexpression of scd1 induced formation of abnormal spindles and chromosome missegregation. The scd1 deletion worsened the defects of spindle formation in tubulin mutants; by contrast, it did not induce lethality in mutants defective in the spindle pole bodies. These genetic data suggest that Scd1 can interact with tubulin with substantial specificity to affect proper spindle formation and chromosome segregation. Subcellular localization data further illustrated that a GFP-Scd1 fusion protein can associate with the spindle. Finally, we showed that unlike ras1Delta and scd1Delta, byr2Delta (affecting the Ras1 effector for mating) is not synthetically lethal with the tubulin mutations. These data collectively suggest that the Ras1 pathway can impinge upon microtubules through Scd1, but not Byr2, to affect proper spindle formation and chromosome segregation.  相似文献   

14.
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.  相似文献   

15.
Cyclin-dependent kinases (CDKs) trigger essential cell cycle processes including critical events in G1 phase that culminate in bud emergence, spindle pole body duplication, and DNA replication. Localized activation of the Rho-type GTPase Cdc42p is crucial for establishment of cell polarity during G1, but CDK targets that link the Cdc42p module with cell growth and cell cycle commitment have remained largely elusive. Here, we identify the GTPase-activating protein (GAP) Rga2p as an important substrate related to the cell polarity function of G1 CDKs. Overexpression of RGA2 in the absence of functional Pho85p or Cdc28p CDK complexes is toxic, due to an inability to polarize growth. Mutation of CDK consensus sites in Rga2p that are phosphorylated both in vivo and in vitro by Pho85p and Cdc28p CDKs results in a loss of G1 phase-specific phosphorylation. A failure to phosphorylate Rga2p leads to defects in localization and impaired polarized growth, in a manner dependent on Rga2p GAP function. Taken together, our data suggest that CDK-dependent phosphorylation restrains Rga2p activity to ensure appropriate activation of Cdc42p during cell polarity establishment. Inhibition of GAPs by CDK phosphorylation may be a general mechanism to promote proper G1-phase progression.  相似文献   

16.
Li Y  Chang EC 《Genetics》2003,165(2):477-488
Fission yeast Scd1 is an exchange factor for Cdc42 and an effector of Ras1. In a screen for scd1 interacting genes, we isolated klp5 and klp6, which encode presumptive kinesins. Klp5 and Klp6 form a complex to control the same processes, which so far include microtubule dynamics and chromosome segregation. We showed that klp5 or klp6 inactivation in combination with the scd1 deletion (scd1delta) created a synthetic temperature-dependent growth defect. Further genetic analysis demonstrated that Klp5 and Klp6 interacted specifically with the Ras1-Scd1 pathway, but not with the Ras1-Byr2 pathway. In addition, Klp5 and Klp6 can stably associate with Scd1 and Cdc42. A deletion in the Scd1 C terminus, which contains the PB1 domain, prevented Scd1 binding to Klp5/6 and caused a growth defect in Klp5/6 mutant cells that is indistinguishable from that induced by scd1delta. Analysis of the double-mutant phenotype indicated that at the nonpermissive temperature, cells failed to undergo cytokinesis efficiently. These cells contained abnormal contractile rings in which F-actin and Mid1, a key regulator of F-actin ring formation and positioning, are mispositioned and fragmented. These data suggest that Klp5/6 cooperate with the Ras1-Scd1 pathway to influence proper formation of the contractile ring for cytokinesis.  相似文献   

17.
Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras. With these probes, we video imaged the Rac and Cdc42 activities. In motile HT1080 cells, activities of both Rac and Cdc42 gradually increased toward the leading edge and decreased rapidly when cells changed direction. Under a higher magnification, we observed that Rac activity was highest immediately behind the leading edge, whereas Cdc42 activity was most prominent at the tip of the leading edge. Raichu-Rac and Raichu-Cdc42 were also applied to a rapid and simple assay for the analysis of putative guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in living cells. Among six putative GEFs and GAPs, we identified KIAA0362/DBS as a GEF for Rac and Cdc42, KIAA1256 as a GEF for Cdc42, KIAA0053 as a GAP for Rac and Cdc42, and KIAA1204 as a GAP for Cdc42. In conclusion, use of these single-molecule probes to determine Rac and Cdc42 activity will accelerate the analysis of the spatiotemporal regulation of Rac and Cdc42 in a living cell.  相似文献   

18.
Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase–activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.  相似文献   

19.
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3’s function in polarized bud growth.  相似文献   

20.
Modulation of host cellular GTPases through the injection of the effector proteins SopE2 and SptP is essential for Salmonella typhimurium to enter into non-phagocytic cells. Here we show that expression of the guanine nucleotide exchange factor for Cdc42 SopE2 in Saccharomyces cerevisiae leads to the activation of Fus3 and Kss1 MAPKs, which operate in the mating and filamentation pathways, causing filamentous growth in haploid yeast cells. Furthermore, it promotes the activation of the cell integrity MAPK Slt2. Cdc42 activation by removal of its putative intrinsic GTPase-activating proteins (GAPs), Rga1, Rga2, and Bem3, also results in the phosphorylation of Kss1, Fus3, and Slt2 MAPKs. These data support the role of these GAP proteins as negative regulators of Cdc42, confirm the modulating effect of this GTPase on the filamentation and mating pathways and point to a novel connection between Cdc42 and the cell integrity pathway. Cdc42-induced activation of Slt2 occurs in a mating and filamentation pathway-dependent manner, but it does not require the function of Rho1, which is the GTPase that operates in the cell integrity pathway. Moreover, we report that Salmonella SptP can act as a GAP for Cdc42 in S. cerevisiae, down-regulating MAPK-mediated signaling. Thus, yeast provides a useful system to study the interaction of bacterial pathogenic proteins with eukaryotic signaling pathways. Furthermore, these proteins can be used as a tool to gain insight into the mechanisms that regulate MAPK-mediated signaling in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号