共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection. 相似文献
2.
Infection of mice with murine gammaherpesvirus 68 (MHV68) provides a tractable small animal model to study various aspects of persistent gammaherpesvirus infection. We have previously utilized a transgenic MHV68 that expresses enhanced yellow fluorescent protein (EYFP) to identify infected cells. While this recombinant MHV68 has been useful for identifying infected cell populations by flow cytometry, it has been suboptimal for identification of infected cells in tissue sections due to the high solubility of EYFP. Efficient detection of EYFP expressed from the MHV68 genome in tissue sections requires fixation of whole organs prior to sectioning, which frequently leads to over-fixation of some cellular antigens precluding their detection. To circumvent this issue, we describe the generation and characterization of a transgenic MHV68 harboring a fusion gene composed of the EYFP coding sequence fused to the histone H2B open reading frame. Because the H2bYFP fusion protein is tightly bound in nucleosomes in the nucleus it does not freely diffuse out of unfixed tissue sections, and thus eliminates the need for tissue fixation. We have used the MHV68-H2bYFP recombinant virus to assess the location and distribution of virus infected B cells in germinal centers during the peak of MHV68 latency in vivo. These analyses show that the physical location of distinct populations of infected germinal center B cells correlates well with their surface phenotype. Furthermore, analysis of the distribution of virus infection within germinal center B cell populations revealed that ca. 70% of MHV68 infected GC B cells are rapidly dividing centroblasts, while ca. 20% have a clear centrocyte phenotype. Finally, we have shown that marking of infected cells with MHV68-H2bYFP is extended long after the onset of latency - which should facilitate studies to track MHV68 latently infected cells at late times post-infection. 相似文献
3.
Toll-like receptors (TLRs) are known predominantly for their role in activating the innate immune response. Recently, TLR signaling via MyD88 has been reported to play an important function in development of a B-cell response. Since B cells are a major latency reservoir for murine gammaherpesvirus 68 (MHV68), we investigated the role of TLR signaling in the establishment and maintenance of MHV68 latency in vivo. Mice deficient in MyD88 (MyD88(-/-)) or TLR3 (TLR3(-/-)) were infected with MHV68. Analysis of splenocytes recovered at day 16 postinfection from MyD88(-/-) mice compared to those from wild-type control mice revealed a lower frequency of (i) activated B cells, (ii) germinal-center B cells, and (iii) class-switched B cells. Accompanying this substantial defect in the B-cell response was an approximately 10-fold decrease in the establishment of splenic latency. In contrast, no defect in viral latency was observed in TLR3(-/-) mice. Analysis of MHV68-specific antibody responses also demonstrated a substantial decrease in the kinetics of the response in MyD88(-/-) mice. Analysis of wild-type x MyD88(-/-) mixed-bone-marrow chimeric mice demonstrated that there is a selective failure of MyD88(-/-) B cells to participate in germinal-center reactions as well as to become activated and undergo class switching. In addition, while MHV68 established latency efficiently in the MyD88-sufficient B cells, there was again a ca. 10-fold reduction in the frequency of MyD88(-/-) B cells harboring latent MHV68. This phenotype indicates that MyD88 is important for the establishment of MHV68 latency and is directly related to the role of MyD88 in the generation of a B-cell response. Furthermore, the generation of a B-cell response to MHV68 was intrinsic to B cells and was independent of the interleukin-1 receptor, a cytokine receptor that also signals through MyD88. These data provide evidence for a unique role for MyD88 in the establishment of MHV68 latency. 相似文献
4.
Murine gammaherpesvirus 68 (gammaHV68), like Epstein-Barr virus (EBV), establishes a chronic infection in its host by gaining access to the memory B-cell reservoir, where it persists undetected by the host's immune system. EBV encodes a membrane protein, LMP1, that appears to function as a constitutively active CD40 receptor, and is hypothesized to play a central role in EBV-driven differentiation of infected naive B cells to a memory B-cell phenotype. However, it has recently been shown that there is a critical role for CD40-CD40L interaction in B-cell immortalization by EBV (K.-I. Imadome, M. Shirakata, N. Shimizu, S. Nonoyama, and Y. Yamanashi, Proc. Natl. Acad. Sci. USA 100:7836-7840, 2003), indicating that LMP1 does not adequately recapitulate all of the necessary functions of CD40. The role of CD40 receptor expression on B cells for the establishment and maintenance of gammaHV68 latency is unclear. Data previously obtained with a competition model, demonstrated that in the face of CD40-sufficient B cells, gammaHV68 latency in CD40-deficient B cells waned over time in chimeric mice (I.-J. Kim, E. Flano, D. L. Woodland, F. E. Lund, T. D. Randall, and M. A. Blackman, J. Immunol. 171:886-892, 2003). To further investigate the role of CD40 in gammaHV68 latency in vivo, we have characterized the infection of CD40 knockout (CD40(-/-)) mice. Here we report that, consistent with previous observations, gammaHV68 efficiently established a latent infection in B cells of CD40(-/-) mice. Notably, unlike the infection of normal C57BL/6 mice, significant ex vivo reactivation from splenocytes harvested from infected CD40(-/-) mice 42 days postinfection was observed. In addition, in contrast to gammaHV68 infection of C57BL/6 mice, the frequency of infected naive B cells remained fairly stable over a 3-month period postinfection. Furthermore, a slightly higher frequency of gammaHV68 infection was observed in immunoglobulin D (IgD)-negative B cells, which was stably maintained over a period of 3 months postinfection. The presence of virus in IgD-negative B cells indicates that gammaHV68 may either directly infect memory B cells present in CD40(-/-) mice or be capable of driving differentiation of naive CD40(-/-) B cells. A possible explanation for the apparent discrepancy between the failure of gammaHV68 latency to be maintained in CD40-deficient B cells in the presence of CD40-sufficient B cells and the stable maintenance of gammaHV68 B-cell latency in CD40(-/-) mice came from examining virus replication in the lungs of infected CD40(-/-) mice, where we observed significantly higher levels of virus replication at late times postinfection compared to those in infected C57BL/6 mice. Taken together, these findings are consistent with a model in which chronic virus infection of CD40(-/-) mice is maintained through virus reactivation in the lungs and reseeding of latency reservoirs. 相似文献
5.
Murine gammaherpesvirus 68 (MHV-68) glycoprotein B (gB) was identified in purified virions by immunoblotting, immunoprecipitation, and immunoelectron microscopy. It was synthesized as a 120-kDa precursor in infected cells and cleaved into 65-kDa and 55-kDa disulfide-linked subunits close to the time of virion release. The N-linked glycans on the cleaved, virion gB remained partially endoglycosidase H sensitive. The processing of MHV-68 gB therefore appears similar to that of Kaposi's sarcoma-associated herpesvirus gB and human cytomegalovirus gB. 相似文献
6.
Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. 总被引:9,自引:12,他引:9
下载免费PDF全文

Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes. 相似文献
7.
8.
9.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice results in the establishment of a chronic infection, which is largely maintained through latent infection of B lymphocytes. Acute virus replication is almost entirely cleared by 2 weeks postinfection. Spontaneous reactivation of gammaHV68 from latently infected splenocytes upon ex vivo culture can readily be detected at the early stages of infection (e.g., day 16). However, by 6 weeks postinfection, very little spontaneous reactivation is detected upon explant into tissue culture. Here we report that stimulation of latently infected splenic B cells harvested at late times postinfection with cross-linking surface immunoglobulin (Ig), in conjunction with anti-CD40 antibody treatment, triggers virus reactivation. As expected, this treatment resulted in B-cell activation, as assessed by upregulation of CD69 on B cells, and ultimately B-cell proliferation. Since anti-Ig/anti-CD40 stimulation resulted in splenic B-cell proliferation, we assessed whether this reactivation stimulus could overcome the previously characterized defect in virus reactivation of a v-cyclin null gammaHV68 mutant. This analysis demonstrated that anti-Ig/anti-CD40 stimulation could drive reactivation of the v-cyclin null mutant virus in latently infected splenocytes, but not to the levels observed with wild-type gammaHV68. Thus, there appears to be a role for the v-cyclin in B cells following anti-Ig/anti-CD40 stimulation independent of the induction of the cell cycle. Finally, to assess signals that are not mediated through the B-cell receptor, we demonstrate that addition of lipopolysaccharide to explanted splenocyte cultures also enhanced virus reactivation. These studies complement and extend previous analyses of Epstein-Barr virus and Kaposi's sarcoma-associated virus reactivation from latently infected cell lines by investigating reactivation of gammaHV68 from latently infected primary B cells recovered from infected hosts. 相似文献
10.
11.
12.
Rickabaugh TM Brown HJ Wu TT Song MJ Hwang S Deng H Mitsouras K Sun R 《Journal of virology》2005,79(5):3217-3222
Murine gammaherpesvirus 68 (MHV-68), Kaposi's sarcoma-associated herpesvirus (HHV-8), and Epstein-Barr virus (EBV) are all members of the gammaherpesvirus family, characterized by their ability to establish latency in lymphocytes. The RTA protein, conserved in all gammaherpesviruses, is known to play a critical role in reactivation from latency. Here we report that HHV-8 RTA, not EBV RTA, was able to induce MHV-68 lytic viral proteins and DNA replication and processing and produce viable MHV-68 virions from latently infected cells at levels similar to those for MHV-68 RTA. HHV-8 RTA was also able to activate two MHV-68 lytic promoters, whereas EBV RTA was not. In order to define the domains of RTA responsible for their functional differences in viral promoter activation and initiation of the MHV-68 lytic cycle, chimeric RTA proteins were constructed by exchanging the N-terminal and C-terminal domains of the RTA proteins. Our data suggest that the species specificity of MHV-68 RTA resides in the N-terminal DNA binding domain. 相似文献
13.
Symensma TL Martinez-Guzman D Jia Q Bortz E Wu TT Rudra-Ganguly N Cole S Herschman H Sun R 《Journal of virology》2003,77(23):12753-12763
The murine gammaherpesvirus 68 (MHV-68 or gammaHV-68) model provides many advantages for studying virus-host interactions involved in gammaherpesvirus replication, including the role of cellular responses to infection. We examined the effects of cellular cyclooxygenase-2 (COX-2) and its by-product prostaglandin E(2) (PGE(2)) on MHV-68 gene expression and protein production following de novo infection of cultured cells. Western blot analyses revealed an induction of COX-2 protein in MHV-68-infected cells but not in cells infected with UV-irradiated MHV-68. Luciferase reporter assays demonstrated activation of the COX-2 promoter during MHV-68 replication. Two nonsteroidal anti-inflammatory drugs, a COX-2-specific inhibitor (NS-398) and a COX-1-COX-2 inhibitor (indomethacin), substantially reduced MHV-68 protein production in infected cells. Inhibition of viral protein expression and virion production by NS-398 was reversed in the presence of exogenous PGE(2). Global gene expression analysis using an MHV-68 DNA array showed that PGE(2) increased production of multiple viral gene products, and NS-398 inhibited production of many of the same genes. These studies suggest that COX-2 activity and PGE(2) production may play significant roles during MHV-68 de novo infection. 相似文献
14.
15.
16.
Hye-Jeong Cho Sungbum Kim Sung-Eun Kwak Tae-Cheon Kang Hee-Sung Kim Hyung-Joo Kwon Yoon-Won Kim Yong-Sun Kim Eun-Kyung Choi Moon Jung Song 《Molecules and cells》2009,27(1):105-111
Gammaherpesvirus infection of the central nervous system (CNS) has been linked to various neurological diseases, including
meningitis, encephalitis, and multiple sclerosis. However, little is known about the interactions between the virus and the
CNS in vitro or in vivo. Murine gammaherpesvirus 68 (MHV-68 or γHV-68) is genetically related and biologically similar to human gammaherpesviruses, thereby providing a tractable animal model
system in which to study both viral pathogenesis and replication. In the present study, we show the successful infection of
cultured neuronal cells, microglia, and astrocytes with MHV-68 to various extents. Upon intracerebroventricular injection
of a recombinant virus (MHV-68/LacZ) into 4–5-week-old and 9–10-week-old mice, the 4–5-week-old mice displayed high mortality
within 5–7 days, while the majority of the 9–10-week-old mice survived until the end of the experimental period. Until a peak
at 3–4 days post-infection, viral DNA replication and gene expression were similar in the brains of both mouse groups, but
only the 9–10-week-old mice were able to subdue viral DNA replication and gene expression after 5 days post-infection. Pro-inflammatory
cytokine mRNAs of tumor necrosis factor-α, interleukin 1β, and interleukin 6 were highly induced in the brains of the 4–5-week-old
mice, suggesting their possible contributions as neurotoxic factors in the agedependent control of MHV-68 replication of the
CNS.
These authors contributed equally to this work. 相似文献
17.
Gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68; also known as gammaherpesvirus 68 [γHV68] or murine herpesvirus 4 [MuHV-4]), establish lifelong latency in the resting memory B cell compartment. However, little is known about how this reservoir of infected mature B cells is maintained for the life of the host. In the context of a normal immune system, the mature B cell pool is naturally maintained by the renewable populations of developing B cells that arise from hematopoiesis. Thus, recurrent infection of these developing B cell populations could allow the virus continual access to the B cell lineage and, subsequent to differentiation, the memory B cell compartment. To begin to address this hypothesis, we examined whether MHV68 establishes latency in developing B cells during a normal course of infection. In work described here, we demonstrate the presence of viral genome in bone marrow pro-pre-B cells and immature B cells during early latency and immature B cells during long-term latency. Further, we show that transitional B cells in the spleen are latently infected and express the latency-associated nuclear antigen (LANA) throughout chronic infection. Because developing B cells normally exhibit a short life span and a high rate of turnover, these findings suggest a model in which gammaherpesviruses may gain access to the mature B cell compartment by recurrent seeding of developing B cells. 相似文献
18.
Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency
下载免费PDF全文

Murine gammaherpesvirus 68 (gammaHV68 [also known as MHV-68]) establishes a latent infection in mice, providing a small-animal model with which to identify host and viral factors that regulate gammaherpesvirus latency. While gammaHV68 establishes a latent infection in multiple tissues, including splenocytes and peritoneal cells, the requirements for latent infection within these tissues are poorly defined. Here we report the characterization of a spontaneous 9.5-kb-deletion mutant of gammaHV68 that lacks the M1, M2, M3, and M4 genes and eight viral tRNA-like genes. Previously, this locus has been shown to contain the latency-associated M2, M3, and viral tRNA-like genes. Through characterization of this mutant, we found that the M1, M2, M3, M4 genes and the viral tRNA-like genes are dispensable for (i) in vitro replication and (ii) the establishment and maintenance of latency in vivo and reactivation from latency following intraperitoneal infection. In contrast, following intranasal infection with this mutant, there was a defect in splenic latency at both early and late times, a phenotype not observed in peritoneal cells. These results indicate (i) that there are different genetic requirements for the establishment of latency in different latent reservoirs and (ii) that the genetic requirements for latency depend on the route of infection. While some of these phenotypes have been observed with specific mutations in the M1 and M2 genes, other phenotypes have never been observed with the available gammaHV68 mutants. These studies highlight the importance of loss-of-function mutations in defining the genetic requirements for the establishment and maintenance of herpesvirus latency. 相似文献
19.
Disruption of the murine gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation from latency 总被引:6,自引:0,他引:6
下载免费PDF全文

Murine gammaherpesvirus 68 (gammaHV68, or MHV-68) is a genetically tractable, small animal model for the analysis of gammaherpesvirus pathogenesis. The gammaHV68 genome is colinear with the genomes of other sequence gammaherpesviruses, containing large blocks of conserved genes interspersed by a number of putative genes without clear homologs in the other gammaherpesviruses. One of these putative unique genes, the M1 open reading frame (ORF), exhibits sequence homology to a poxvirus serine protease inhibitor, SPI-1, as well as to another gammaHV68 gene, M3, which we have recently shown encodes an abundantly secreted chemokine binding protein. To assess the contribution of the M1 ORF to gammaHV68 pathogenesis, we have generated a recombinant gammaHV68 in which the M1 ORF has been disrupted through targeted insertion of a lacZ expression cassette (M1.LacZ). Although M1.LacZ replicated normally in tissue culture, it exhibited decreased splenic titers at days 4 and 9 postinfection in both immunocompetent and immunodeficient mice. Despite decreased levels of acute virus replication, M1.LacZ established a latent infection comparable to wild-type (wt) gammaHV68, but exhibited an approximately fivefold increase in efficiency of reactivation from latency. M1.LacZ also caused severe vasculitis of the great elastic arteries in gamma interferon receptor (IFN-gammaR)-deficient mice with a frequency comparable to wt gammaHV68, but did not cause the mortality or splenic pathology observed with wt gammaHV68 infection of IFN-gammaR-deficient mice. Restoration of M1 ORF sequences into M1.LacZ (M1 marker rescue, or M1.MR) demonstrated that M1.LacZ phenotypic alterations in growth in vivo and latency were not due to the presence of additional mutations located elsewhere in the M1. LacZ genome. Generation of a second M1 mutant virus containing a deletion at the 5' end of the M1 ORF (M1Delta511), but lacking the LacZ expression cassette, revealed the same latency phenotype observed with the M1.LacZ mutant. However, M1Delta511 was not attenuated for acute virus replication in the spleen. We conclude that (i) the induction of arteritis in gammaHV68-infected IFN-gammaR-deficient mice can occur in the absence of splenic pathology and mortality, (ii) replication during acute infection is not the primary determinant for the establishment of latent infection, and (iii) the M1 ORF, or a closely linked gene, encodes a gene product that functions to suppress virus reactivation. 相似文献
20.
Bortz E Whitelegge JP Jia Q Zhou ZH Stewart JP Wu TT Sun R 《Journal of virology》2003,77(24):13425-13432
Murine gammaherpesvirus 68 (MHV68 [also known as gammaHV-68]) is distinguished by its ability to replicate to high titers in cultured cells, making it an excellent candidate for studying gammaherpesvirus virion composition. Extracellular MHV68 virions were isolated, and abundant virion-associated proteins were identified by mass spectrometry. Five nucleocapsid protein homologues, the tegument protein homologue encoded by open reading frame (ORF) 75c, and envelope glycoproteins B and H were detected. In addition, gene products from MHV68 ORF20, ORF24, ORF28, ORF45, ORF48, and ORF52 were identified in association with virions, suggesting that these gammaherpesvirus genes are involved in the early phase of infection or virion assembly and egress. 相似文献