首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of glial scar and cystic cavities restricts axon regeneration after spinal cord injury. Chondroitin sulphate proteoglycans (CSPGs) are regarded as the prominent inhibitory molecules in the glial scar, and their inhibitory effects may be abolished in part by chondroitinase ABC (ChABC), which can digest CSPGs. CSPGs are secreted mostly by reactive astrocytes, which form dense scar tissues. The intermediate filament protein vimentin underpins the cytoskeleton of reactive astrocytes. Previously we have shown that retroviruses carrying full-length antisense vimentin cDNA reduce reactive gliosis. Here we administered both antisense vimentin cDNA and ChABC to hemisected rat spinal cords. Using RT-PCR, Western blotting and immunohistochemistry, we found that the combined treatment reduced the formation of glial scar and cystic cavities through degrading CSPGs molecules and inhibiting intermediate filament proteins. The modified intra- and extra-cellular architecture may alter the physical and biochemical characteristics of the scar, and the combined therapy might be used to inhibit glial scar formation.  相似文献   

2.
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.  相似文献   

3.
In spinal cord injury, the injury could trigger some inhibitory signal cascades to promote chondroitin sulfate proteoglycans (CSPGs), the structures of scar tissues, formation. CSPGs could limit axonal regeneration mainly through the glycosaminoglycan (GAG) chain in the lesion site were suggested. We hypothesized that the digestion of CSPGs by chondroitinase ABC (ChABC) might decrease the inhibitory effects of limiting axonal re-growth after spinal cord injury. We compared the digesting products of CSPGs such as 2B6 by ChABC with the untreated control group and found no immunostaining of 2B6 in control group. The smaller size scars of ChABC-treatment were observed via CS-56, a type of CSPGs, 8 weeks after transection by immunohistochemistry. The inhibitory effects of CSPGs withdraw GAGs following ChABC-treatment would reduce, and immunopositive GAP-43 newly outgrown fibers were identified. In the animal trials, ChABC-treatment could improve motor function through BBB locomotor's test and reduce limiting ability of scar tissues to promote axonal regeneration via changing the structure of CSPGs by immunohistochemistry with GAP-43.  相似文献   

4.
Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re‐growth across the gradient. The use of selective enzyme inhibitors revealed that MMP‐2 enables immature astrocytes to cross the proteoglycan rim. The bridge‐building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pretreatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes coinjected with chondroitinase ABC‐induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. © 2010 Wiley Periodicals, Inc.Develop Neurobiol 70: 826–841, 2010  相似文献   

5.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   

6.
Chondroitin sulfate proteoglycans (CSPGs) are up-regulated following spinal cord injury and are partly responsible for failed regeneration. Experimental paradigms in vivo that degrade chondroitin sulfate glycosaminoglycan chains with the bacterial enzyme, chondroitinase, greatly enhance the ability of axons to regenerate through the glial scar. Unfortunately, enthusiasm for this treatment paradigm is diminished by the lack of a minimally invasive and sustained delivery method. To address these deficits, we have engineered a Tet-On adenoviral vector encoding chondroitinase AC and have characterized its enzymatic function in vitro. U373 human astrocytoma cells were transduced with adenovirus and subsequently induced with doxycycline to secrete enzymatically active chondroitinase as detected by western blot and kinetic analyses. Enzymatic activity demonstrated biological relevance in studies where neurite outgrowth into and across CSPG-adsorbed regions pre-treated with conditioned media from chondroitinase secreting astrocytes was significantly increased compared with untreated controls (p < 0.0001). We also measured important parameters of enzyme activity including: pH, temperature, and enzyme stability that are fundamental to harnessing the true therapeutic potential of this approach. The use of resident cells for continuous secretion of CSPG-degrading enzymes at the site of the glial scar promises to be of greater clinical relevance than contemporary methods.  相似文献   

7.
Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining, and by day 8 in the case of WFA. This study demonstrated neuronal cell surface glycosylation changes in an inhibitory environment and indicated a return to normal glycosylation after treatment with ChABC, which may be promising for identifying potential therapies for neuronal regeneration strategies.  相似文献   

8.
Oligodendrocyte precursor cells (OPCs) are a newly recognized glial component of the adult central nervous system of unknown function. Antibodies against the NG2 chondroitin sulfate proteoglycan have been useful tools to identify these cells in intact tissue. Here we review studies that show that OPCs react to several types of experimentally induced brain injury. Injury stimulates OPCs to re-enter the cell cycle, divide, and accumulate at the site of damage. OPCs, together with microglia and astrocytes, form the glial scar. Glial scars are thought to inhibit or prevent axonal regeneration and reactive OPCs contribute to this inhibition by producing growth-inhibiting chondroitin sulfate proteoglycans, particularly NG2. In developing animals, NG2 is found in areas, such as the perinotochordal mesenchyme, that are avoided by growing motor and sensory axons. Within the developing CNS, NG2-expressing cells surround the developing optic chiasm and tract and separate it from the overlying diencephalon. Thus, NG2-expressing cells are well positioned to inhibit axonal growth from developing as well as regenerating neurons.  相似文献   

9.
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin degradation results in loss of axonal function and eventual axonal degeneration. Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to remyelination of denuded axons occurs regularly in early stages of MS but halts as the pathology transitions into progressive MS. Pharmacological potentiation of endogenous OPC maturation and remyelination is now recognized as a promising therapeutic approach for MS. In this study, we analyzed the effects of modulating the Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective inhibitors of ROCK, on the transformation of OPCs into mature, myelinating oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent and human origin, that ROCK inhibition in OPCs results in a significant generation of branches and cell processes in early differentiation stages, followed by accelerated production of myelin protein as an indication of advanced maturation. Furthermore, inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons and remyelination in rat cerebellar tissue explants previously demyelinated with lysolecithin. Our findings indicate that by direct inhibition of this signaling molecule, the OPC differentiation program is activated resulting in morphological and functional cell maturation, myelin formation, and regeneration. Altogether, we show evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the induction of remyelination in demyelinating pathologies.  相似文献   

10.
Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs) in a progenitor state, but what factor may enable oligodendrocyte (OL) differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.  相似文献   

11.
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration.  相似文献   

12.
The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI.  相似文献   

13.
Guo  Yang  Klüppel  Michael  Tang  Hao  Tan  Sheng  Zhang  Peidong  Chen  Zhenzhou 《Biotechnology letters》2016,38(5):893-900
Biotechnology Letters - To test the feasibility of secretion of functional chondroitinase ABC (ChABC), a bacterial enzyme that promotes axonal regeneration after spinal cord injury, from human bone...  相似文献   

14.
Chondroitin sulphate proteoglycans (CSPGs) with the major component NG2 have an inhibitory effect on regeneration of damaged axons after spinal cord injury. In this study, we investigate whether the digestion of CSPGs by chondroitinase ABC (ChABC) may decrease the NG2 expression and promote axon regrowth through the lesion site. Rats underwent spinal cord compression injury and were treated with ChABC or vehicle through an intrathecal catheter delivery at 2, 3, and 4 days after injury. In addition, animals were behaviorally scored using BBB test in weekly intervals after SCI. Based on immunocytochemical analyses, we have quantified distribution of NG2 glycoprotein and GAP-43 in spinal cord tissue in both experimental groups. Multiple injections of ChABC caused decrease of NG2 expression at lesion site at 5 and 7 days, but not at 14 and 28 days in comparison with vehicle-treated rats and significantly enhanced GAP-43 expression during the entire survival. The densitometry analysis showed significantly higher GAP-43 immunoreactivity (1.8–2.2-fold) in the regrowing axons and cell bodies within the central lesion cavity when compared with vehicle group. Longitudinally oriented and disorganized GAP-43-labeled axons were able to infiltrate and penetrate damaged tissue. The outgrowth of GAP-43 axons after CHABC delivery was significantly longer (≤0.457 mm) when compared with the length of axons in vehicle-treated rats (≤0.046 mm). Present findings suggest that degradation of NG2 with acute IT ChABC treatment may promote ongoing (long-lasting) axonal regenerative processes at late survival (14 and 28 days), but with no significant impact on the improvement of motor function.  相似文献   

15.
Molecular cues, such as netrin 1, guide axons by influencing growth cone motility. Rho GTPases are a family of intracellular proteins that regulate the cytoskeleton, substrate adhesion and vesicle trafficking. Activation of the RhoA subfamily of Rho GTPases is essential for chemorepellent axon guidance; however, their role during axonal chemoattraction is unclear. Here, we show that netrin 1, through its receptor DCC, inhibits RhoA in embryonic spinal commissural neurons. To determine whether netrin 1-mediated chemoattraction requires Rho function, we inhibited Rho signaling and assayed axon outgrowth and turning towards netrin 1. Additionally, we examined two important mechanisms that influence the guidance of axons to netrin 1: substrate adhesion and transport of the netrin receptor DCC to the plasma membrane. We found that inhibiting Rho signaling increased plasma membrane DCC and adhesion to substrate-bound netrin 1, and also enhanced netrin 1-mediated axon outgrowth and chemoattractive axon turning. Conversely, overexpression of RhoA or constitutively active RhoA inhibited axonal responses to netrin 1. These findings provide evidence that Rho signaling reduces axonal chemoattraction to netrin 1 by limiting the amount of plasma membrane DCC at the growth cone, and suggest that netrin 1-mediated inhibition of RhoA activates a positive-feedback mechanism that facilitates chemoattraction to netrin 1. Notably, these findings also have relevance for CNS regeneration research. Inhibiting RhoA promotes axon regeneration by disrupting inhibitory responses to myelin and the glial scar. By contrast, we demonstrate that axon chemoattraction to netrin 1 is not only maintained but enhanced, suggesting that this might facilitate directing regenerating axons to appropriate targets.  相似文献   

16.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

17.
Tightly controlled termination of proliferation determines when oligodendrocyte progenitor cells (OPCs) can initiate differentiation and mature into myelin-forming cells. Protein-tyrosine phosphatase α (PTPα) promotes OPC differentiation, but its role in proliferation is unknown. Here we report that loss of PTPα enhanced in vitro proliferation and survival and decreased cell cycle exit and growth factor dependence of OPCs but not neural stem/progenitor cells. PTPα(-/-) mice have more oligodendrocyte lineage cells in embryonic forebrain and delayed OPC maturation. On the molecular level, PTPα-deficient mouse OPCs and rat CG4 cells have decreased Fyn and increased Ras, Cdc42, Rac1, and Rho activities, and reduced expression of the Cdk inhibitor p27Kip1. Moreover, Fyn was required to suppress Ras and Rho and for p27Kip1 accumulation, and Rho inhibition in PTPα-deficient cells restored expression of p27Kip1. We propose that PTPα-Fyn signaling negatively regulates OPC proliferation by down-regulating Ras and Rho, leading to p27Kip1 accumulation and cell cycle exit. Thus, PTPα acts in OPCs to limit self-renewal and facilitate differentiation.  相似文献   

18.
By causing damage to neural networks, spinal cord injuries (SCI) often result in severe motor and sensory dysfunction. Functional recovery requires axonal regrowth and regeneration of neural network, processes that are quite limited in the adult central nervous system (CNS). Previous work has shown that SCI lesions contain an accumulation of activated microglia, which can have multiple pathophysiological influences. Here, we show that activated microglia inhibit axonal growth via repulsive guidance molecule a (RGMa). We found that microglia activated by lipopolysaccharide (LPS) inhibited neurite outgrowth and induced growth cone collapse of cortical neurons in vitro--a pattern that was only observed when there was direct contact between microglia and neurons. After microglia were activated by LPS, they increased expression of RGMa; however, treatment with RGMa-neutralizing antibodies or transfection of RGMa siRNA attenuated the inhibitory effects of microglia on axonal outgrowth. Furthermore, minocycline, an inhibitor of microglial activation, attenuated the effects of microglia and RGMa expression. Finally, we examined whether these in vitro patterns could also be observed in vivo. Indeed, in a mouse SCI model, minocycline treatment reduced the accumulation of microglia and decreased RGMa expression after SCI, leading to reduced dieback in injured corticospinal tracts. These results suggest that activated microglia play a major role in inhibiting axon regeneration via RGMa in the injured CNS.  相似文献   

19.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix in the CNS that inhibit axonal regeneration after CNS injury. Signaling pathways in neurons triggered by CSPGs are still largely unknown. In this study, using well-characterized in vitro assays for neurite outgrowth and neurite guidance, we demonstrate a major role for myosin II in the response of neurons to CSPGs. We found that the phosphorylation of myosin II regulatory light chains is increased by CSPGs. Specific inhibition of myosin II activity with blebbistatin allows growing neurites to cross onto CSPG-rich areas and increases the length of neurites of neurons growing on CSPGs. Using specific gene knockdown, we demonstrate selective roles for myosin IIA and IIB in these processes. Time lapse microscopy and immunocytochemistry demonstrated that CSPGs also inhibit cell adhesion and cell spreading. Inhibition of myosin II selectively accelerated neurite initiation without altering cell adhesion and spreading on CSPGs.  相似文献   

20.
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intra-cellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes over-lapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号