首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H?+?C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H?+?C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H?+?C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.  相似文献   

2.
Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year(-1)); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year(-1)); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year(-1)). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling.  相似文献   

3.
Hormonal changes induced by partial rootzone drying of irrigated grapevine   总被引:26,自引:0,他引:26  
Partial rootzone drying (PRD) is a new irrigation technique which improves the water use efficiency (by up to 50%) of wine grape production without significant crop reduction. The technique was developed on the basis of knowledge of the mechanisms controlling transpiration and requires that approximately half of the root system is always maintained in a dry or drying state while the remainder of the root system is irrigated. The wetted and dried sides of the root system are alternated on a 10-14 d cycle. Abscisic acid (ABA) concentration in the drying roots increases 10-fold, but ABA concentration in leaves of grapevines under PRD only increased by 60% compared with a fully irrigated control. Stomatal conductance of vines under PRD irrigation was significantly reduced when compared with vines receiving water to the entire root system. Grapevines from which water was withheld from the entire root system, on the other hand, show a similar reduction in stomatal conductance, but leaf ABA increased 5-fold compared with the fully irrigated control. PRD results in increased xylem sap ABA concentration and increased xylem sap pH, both of which are likely to result in a reduction in stomatal conductance. In addition, there was a reduction in zeatin and zeatin-riboside concentrations in roots, shoot tips and buds of 60, 50 and 70%, respectively, and this may contribute to the reduction in shoot growth and intensified apical dominance of vines under PRD irrigation. There is a nocturnal net flux of water from wetter roots to the roots in dry soil and this may assist in the distribution of chemical signals necessary to sustain the PRD effect. It was concluded that a major effect of PRD is the production of chemical signals in drying roots that are transported to the leaves where they bring about a reduction in stomatal conductance.  相似文献   

4.
BACKGROUND AND AIMS: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS: Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS: None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS: The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.  相似文献   

5.
The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.5-fold increase in the root to leaf dry mass ratio. The leaf hydraulic conductance expressed on a leaf area basis was similar for the dAS compared with the control plants. As a result, the hydraulic conductance of the whole plant was unchanged. Under sufficient and under water-deficient conditions, stomatal conductance, transpiration rate, plant hydraulic conductance, leaf water potential, osmotic pressure, and turgor pressure were similar for the dAS compared with the control plants. However, after 4 d of rewatering following 8 d of drying, the control plants recovered their hydraulic conductance and their transpiration rates faster than the dAS plants. Moreover, after rewatering, the leaf water potential was significantly higher for the control than for the dAS plants. From these results, we conclude that the PIPs play an important role in the recovery of Arabidopsis from the water-deficient condition.  相似文献   

6.
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.  相似文献   

7.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

8.
Plant growth and physiology under heterogeneous salinity   总被引:3,自引:0,他引:3  

Background

Soil salinity is heterogeneous, and within the root-zone of single plants the salinity of the soil solution can vary widely.

Scope

This review shows that water uptake by roots from the least saline part of the soil is the key factor driving shoot growth; plants with part of the root at low salinity (0–10?mM NaCl) had 3- to 10-fold higher shoot dry mass than plants with roots in uniformly saline (50–800?mM NaCl) media. Plants in heterogeneous salinity had shoot water potentials similar to those of plants growing in uniform low-salt media, and this was likely a result of uptake of low salinity water and reduced stomatal conductance. Under heterogeneous conditions, roots in saline media took up ions, resulting in higher shoot Na+ and Cl- concentrations compared with plants growing in low-salt media.

Conclusions

Results from split-root experiments complement knowledge of plant responses to uniform salinities; the next challenge is to develop new protocols so that this understanding can be extrapolated to more complex soil- and field-based systems. More work is also required to understand the physiological mechanisms underlying changes in stomatal conductance and shoot ion regulation in plants under heterogeneous salinities and how these are linked to the saline parts of the root-zone.  相似文献   

9.
Stomatal behavior and water relations of waterlogged tomato plants   总被引:10,自引:5,他引:5       下载免费PDF全文
The effects of waterlogging the soil on leaf water potential, leaf epidermal conductance, transpiration, root conductance to water flow, and petiole epinasty have been examined in the tomato (Lycopersicon esculentum Mill.). Stomatal conductance and transpiration are reduced by 30% to 40% after approximately 24 hours of soil flooding. This is not due to a transient water deficit, as leaf water potential is unchanged, even though root conductance is decreased by the stress. The stomatal response apparently prevents any reduction in leaf water potential. Experiments with varied time of flooding, root excision, and stem girdling provide indirect evidence for an influence of roots in maintaining stomatal opening potential. This root-effect cannot be entirely accounted for by alterations in source-sink relationships. Although 1-aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, is transported from the roots to the shoots of waterlogged tomato plants, it has no direct effect on stomatal conductance. Ethylene-induced petiole epinasty develops coincident with partial stomatal closure in waterlogged plants. Leaf epinasty may have beneficial effects on plant water balance by reducing light interception.  相似文献   

10.
Aquaporins in poplar: What a difference a symbiont makes!   总被引:3,自引:0,他引:3  
  相似文献   

11.
改变土壤根系的分布以汲取深层土壤水分的能力是植物避免干旱的主要策略。山黧豆是一种抗逆性强的豆类作物,该研究通过起垄条播控制性沟灌的方式,设置传统灌溉(FI)、交替灌溉(PRD,灌水量减少50%)和不灌溉(NI)3种处理模式,探索不同灌溉模式对播种后不同时期山黧豆土壤水分、根系分布、叶片气体交换、水分利用效率和籽粒产量的影响。结果表明:(1)在FI、PRD和NI处理下,山黧豆的根系分别有89.8%、86.9%和84.9%生长在0~20 cm的表层土壤中;干旱胁迫使PRD和NI处理下深层土壤中根系的比例提高至13.05%和15.07%。(2)在整个生育期内,土壤干旱显著降低了山黧豆叶片的净光合速率、蒸腾速率和气孔导度;在种植后60 d时,PRD和NI处理下叶片的瞬时水分利用效率分别较FI处理显著提高了21.4%和14.9%。(3)干旱胁迫显著降低了山黧豆植株高度、第一豆荚高、平均结荚数和豆粒数以及地上部和根系的干重,但显著增加了根冠比;PRD处理对豆荚长度、豆荚重和每荚豆粒重没有显著影响;PRD和NI处理下山黧豆平均籽粒产量分别比FI处理显著降低了53%和63%。研究发现,在干旱胁迫条件下,山黧豆能够通过提高深层土壤中根系的比例、更多吸收深层土壤水分、显著增加根冠比以及显著提高生殖生长期叶片的瞬时水分利用效率,减轻干旱胁迫对自身生长的影响。该研究结果可为山黧豆在旱区推广种植提供理论依据。  相似文献   

12.
Abstract Experiments with isolated roots of wheat plants suggested that when water uptake rates are low, low concentrations of abscisic acid (ABA) may increase the flux of water into roots. This increase was recorded despite an ABA-stimulated reduction in the hydraulic conductance of the whole root system. Hydraulic conductances were measured under steady-state conditions. A system is described where the stomatal behaviour and water movement through roots of a single intact plant may be concurrently monitored. Experiments with intact plants confirmed that application of ABA could increase the rate of water movement into roots when uptake rates were low. No such increase was observed at high flux rates. Application of ABA to roots caused partial stomatal closure and caused conductance to oscillate around a reduced mean value. An ABA-stimulated increase in the turgor sensitivity of stomata is postulated and the significance of this effect is discussed.  相似文献   

13.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

14.
15.
根源信号参与调控气孔行为的机制及其农业节水意义   总被引:12,自引:5,他引:7  
在土壤干旱情况下,根源信号一方面向植物地上部分的长距离传输,为地上部分提供了土壤水分获取能力的测度,另一方面调控气孔开度,抑制蒸腾作用并提高植物的水分利用效率.文中综述了根源信号参与调控植物水分利用的生理机制和理论模型,指出该模型与根系吸水模型、气孔导度模型耦合,能够更好地反映植物叶片对土壤干旱以及大气干旱的响应、评述了在根源信号参与调控植物水分关系的基础上发展的调亏灌溉(RDI)、部分根系干旱(PRD)和控制性交替灌溉(CAI)等有效灌溉手段,有助于合理配置根系层供水量,通过根土相互作用和信号物质的传输,降低蒸腾和提高水分利用效率、另外,根源信号在调控根系生长发育、延缓地上部分生长以调节根冠比例,优化资源分配以利于生殖生长等方面均有所为,为全面提高农田水分利用效率提供节水生理基础。  相似文献   

16.
In the global change scenario, increased CO2 may favour water use efficiency (WUE) by plants. By contrast, in arid and semiarid areas, salinity may reduce water uptake from soils. However, an elevated WUE does not ensure a reduced water uptake and upon salinity this fact may constitute an advantage for plant tolerance. In this work, we aimed to determine the combined effects of enhanced [CO2] and salinity on the plant water status, in relation to the regulation of PIP aquaporins, in the root and leaf tissues of broccoli plants (Brassica oleracea L. var Italica), under these two environmental factors. Thus, different salinity concentrations (0, 60 and 90 mM NaCl) were applied under ambient (380 ppm) and elevated (800 ppm) [CO2]. Under non-salinised conditions, stomatal conductance (Gs) and transpiration rate (E) decreased with rising [CO2] whereas water potential (Ψω) was maintained stable, which caused a reduction in the root hydraulic conductance (L0). In addition, PIP1 and PIP2 abundance in the roots was decreased compared to ambient [CO2]. Under salinity, the greater stomatal closure observed at elevated [CO2] – compared to that at ambient [CO2] – caused a greater reduction in Gs and E and allowed plants to maintain their water balance. In addition, a lower decrease in L0 under salt stress was observed at elevated [CO2], when comparing with the decrease at ambient [CO2]. Modifications in PIP1 and PIP2 abundance or their functionality in the roots is discussed. In fact, an improved water status of the broccoli plants treated with 90 mM NaCl and elevated [CO2], evidenced by a higher Ψω, was observed together with higher photosynthetic rate and water use efficiency. These factors conferred on the salinised broccoli plants greater leaf area and biomass at elevated [CO2], in comparison with ambient [CO2]. We can conclude that, under elevated [CO2] and salt stress, the water flow is influenced by the tight control of the aquaporins in the roots and leaves of broccoli plants and that increased PIP1 and PIP2 abundance in these organs provides a mechanism of tolerance that maintains the plant water status.  相似文献   

17.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

18.
19.
20.
Root attributes affecting water uptake of rice (Oryza sativa) under drought   总被引:1,自引:0,他引:1  
Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp (r)) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号