首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.  相似文献   

2.
Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report “allelic heterogeneity” at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.  相似文献   

3.
Deng YL  Liu LH  Wang Y  Tang HD  Ren RJ  Xu W  Ma JF  Wang LL  Zhuang JP  Wang G  Chen SD 《Human genetics》2012,131(7):1245-1249
CD33 and MS4A6A genes play potential key roles in the pathogenesis of Alzheimer's disease (AD). One recent genome-wide association study has revealed that the rs3865444 polymorphism in the CD33 gene and rs610932 polymorphism in the MS4A6A gene are associated with susceptibility to AD in Caucasians. To evaluate the relationship between the polymorphism of the CD33, MS4A6A gene and AD in the ethnic Chinese Han, we conducted a case-control study (n = 383, age > 54) to determine the prevalence of single-nucleotide polymorphism of two genes in patients with AD in Chinese population of Mainland, and clarified whether these polymorphisms are risk factors for AD. The prevalence of the allele (T) in the rs3865444 polymorphism of the CD33 gene and allele (C) in rs610932 polymorphism of the MS4A6A gene was significantly different in AD patients and control subjects (P < 0.001, respectively), and the results were not influenced by age, gender, or APOE status. Our data revealed the allele (T) of the rs3865444 polymorphism of the CD33 gene and the allele (C) of the rs610932 polymorphism of the MS4A6A gene may contribute to AD risk in the Chinese Han population.  相似文献   

4.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

5.
Sexual intercourse is the major means of HIV transmission, yet the impact of semen on HIV infection of CD4(+) T cells remains unclear. To resolve this conundrum, we measured CD4(+) target cell infection with X4 tropic HIV IIIB and HC4 and R5 tropic HIV BaL and SF162 after incubation with centrifuged seminal plasma (SP) from HIV-negative donors and assessed the impact of SP on critical determinants of target cell susceptibility to HIV infection. We found that SP potently protects CD4(+) T cells from infection with X4 and R5 tropic HIV in a dose- and time-dependent manner. SP caused a diminution in CD4(+) T cell surface expression of the HIVR CD4 and enhanced surface expression of the HIV coreceptor CCR5. Consequently, SP protected CD4(+) T cells from infection with R5 tropic HIV less potently than it protected CD4(+) T cells from infection with X4 tropic HIV. SP also reduced CD4(+) T cell activation and proliferation, and the magnitude of SP-mediated suppression of target cell CD4 expression, activation, and proliferation correlated closely with the magnitude of the protection of CD4(+) T cells from infection with HIV. Taken together, these data show that semen protects CD4(+) T cells from HIV infection by restricting critical determinants of CD4(+) target cell susceptibility to HIV infection. Further, semen contributes to the selective transmission of R5 tropic HIV to CD4(+) target cells.  相似文献   

6.
HIV infection is associated with depletion of intestinal CD4(+) T cells, resulting in mucosal immune dysfunction, microbial translocation, chronic immune activation, and progressive immunodeficiency. In this study, we examined HIV-infected individuals with active virus replication (n = 15), treated with antiretroviral therapy (n = 13), and healthy controls (n = 11) and conducted a comparative analysis of T cells derived from blood and four gastrointestinal (GI) sites (terminal ileum, right colon, left colon, and sigmoid colon). As expected, we found that HIV infection is associated with depletion of total CD4(+) T cells as well as CD4(+)CCR5(+) T cells in all GI sites, with higher levels of these cells found in ART-treated individuals than in those with active virus replication. While the levels of both CD4(+) and CD8(+) T cell proliferation were higher in the blood of untreated HIV-infected individuals, only CD4(+) T cell proliferation was significantly increased in the gut of the same patients. We also noted that the levels of CD4(+) T cells and the percentages of CD4(+)Ki67(+) proliferating T cells are inversely correlated in both blood and intestinal tissues, thus suggesting that CD4(+) T cell homeostasis is similarly affected by HIV infection in these distinct anatomic compartments. Importantly, the level of intestinal CD4(+) T cells (both total and Th17 cells) was inversely correlated with the percentage of circulating CD4(+)Ki67(+) T cells. Collectively, these data confirm that the GI tract is a key player in the immunopathogenesis of HIV infection, and they reveal a strong association between the destruction of intestinal CD4(+) T cell homeostasis in the gut and the level of systemic CD4(+) T cell activation.  相似文献   

7.
It was hypothesized that the EBV-specific CD8(+) T cell response may be dysregulated in multiple sclerosis (MS) patients, possibly leading to a suboptimal control of this virus. To examine the CD8(+) T cell response in greater detail, we analyzed the HLA-A2-, HLA-B7-, and HLA-B8-restricted EBV- and CMV-specific CD8(+) T cell responses in a high number of MS patients and control subjects using tetramers. Content in cytolytic granules, as well as cytotoxic activity, of EBV- and CMV-specific CD8(+) T cells was assessed. We found that MS patients had a lower or a higher prevalence of HLA-A2 and HLA-B7, respectively. Using HLA class I tetramers in HLA-B7(+) MS patients, there was a higher prevalence of MS patients with HLA-B*0702/EBV(RPP)-specific CD8(+) T cells ex vivo. However, the magnitude of the HLA-B*0702/EBV(RPP)-specific and HLA-B*0702/CMV(TPR)-specific CD8(+) T cell response (i.e., the percentage of tetramer(+) CD8(+) T cells in a study subject harboring CD8(+) T cells specific for the given epitope) was lower in MS patients. No differences were found using other tetramers. After stimulation with the HLA-B*0702/EBV(RPP) peptide, the production of IL-2, perforin, and granzyme B and the cytotoxicity of HLA-B*0702/EBV(RPP)-specific CD8(+) T cells were decreased. Altogether, our findings suggest that the HLA-B*0702-restricted viral (in particular the EBV one)-specific CD8(+) T cell response is dysregulated in MS patients. This observation is particularly interesting knowing that the HLA-B7 allele is more frequently expressed in MS patients and considering that EBV is associated with MS.  相似文献   

8.
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.  相似文献   

9.
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.  相似文献   

10.
11.
For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell accumulation at the tissue site after primary and secondary immunization. CD27-dependent CD4(+) T cell help for the memory CD8(+) T cell response was delivered during priming. It did not detectably affect formation of CD8(+) memory T cells, but promoted their secondary expansion. CD27 improved survival of primed CD4(+) T cells, but its contribution to the memory CD8(+) T cell response relied on altered CD4(+) T cell quality rather than quantity. CD27 induced a Th1-diagnostic gene expression profile in CD4(+) T cells, which included the membrane molecule MS4A4B. Accordingly, CD27 increased the frequency of IFN-gamma- and IL-2-producing CD4(+) T cells. It did not affect CD40L expression. Strikingly, MS4A4B was also identified as a unique marker of CD8(+) memory T cells that had received CD27-proficient CD4(+) T cell help during the primary response. This apparent imprinting effect suggests a role for MS4A4B as a downstream effector in CD27-dependent help for CD8(+) T cell memory.  相似文献   

12.
13.
Tago, F., Tsukimoto, M., Nakatsukasa, H. and Kojima. S. Repeated 0.5 Gy Gamma Irradiation Attenuates Autoimmune Disease in MRL-lpr/lpr Mice with Suppression of CD3(+)CD4(-)CD8(-)B220(+) T-Cell Proliferation and with Up-regulation of CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Radiat. Res. 169, 59-66 (2008). MRL-lpr/lpr mice are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated gamma irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation by measuring the weight of the spleen and the population of highly activated CD3(+)CD4(-)CD8(-)B220(+) T cells, which are characteristically involved in autoimmune pathology in these mice. Splenomegaly and an increase in the percentage of CD3(+)CD4(-)CD8(-)B220(+) T cells, which occur with aging in nonirradiated mice, were suppressed in irradiated mice. The high proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells was suppressed in the irradiated animals. The production of autoantibodies and the level of IL6, which activates B cells, were also lowered by radiation exposure. These results indicate that progression of pathology is suppressed by repeated 0.5-Gy gamma irradiation. To uncover the mechanism of the immune suppression, we measured the regulatory T cells, which suppress activated T cells and excessive autoimmune responses. We found that regulatory T cells were significantly increased in irradiated mice. We therefore conclude that repeated 0.5-Gy gamma irradiation suppresses the proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells and the production of IL6 and autoantibodies and up-regulates regulatory T cells.  相似文献   

14.
Antigen stimulation of lymphocytes induces upregulation of phospholipase D (PLD) activity, but the biological significance of PLD-mediated signaling in T cells has not been well established. Here we demonstrate that PLD signaling is essential for proliferation of mouse CD8(+) T cells and CD4(+)CD25(-) T cells, but is not required for proliferation of CD4(+)CD25(+) regulatory T cells. We exploited this observation to develop an efficient method to enrich for regulatory T cells starting from preparations of total CD4(+) T lymphocytes. Inhibition of PLD signaling blocked effector T-cell proliferation after T cell-antigen receptor (TCR) engagement, but had no significant effect on the proliferation of CD4(+)CD25(+) T cells with regulatory functions. Consequently, cells expanded in vitro for one week by antigen receptor stimulation with PLD signal inhibition were markedly enriched for regulatory T cells.  相似文献   

15.
16.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

17.
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.  相似文献   

18.
Although lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been extensively studied, there is little information on turnover in acute infection. We carried out a prospective kinetic analysis of lymphocyte proliferation in 13 rhesus macaques inoculated with pathogenic SIV. A short-lived dramatic increase in circulating Ki-67(+) lymphocytes observed at 1 to 4 weeks was temporally related to the onset of SIV replication. A 5- to 10-fold increase in Ki-67(+) CD8(+) T lymphocytes and a 2- to 3-fold increase in Ki-67(+) CD3(-) CD8(+) natural killer cells accounted for >85% of proliferating lymphocytes at peak proliferation. In contrast, there was little change in the percentage of Ki-67(+) CD4(+) T lymphocytes during acute infection, although transient increases in Ki-67(-) and Ki-67(+) CD4(+) T lymphocytes expressing CD69, Fas, and HLA-DR were observed. A two- to fourfold decline in CD4(+) T lymphocytes expressing CD25 and CD69 was seen later in SIV infection. The majority of Ki-67(+) CD8(+) T lymphocytes were phenotypically CD45RA(-) CD49d(hi) Fas(hi) CD25(-) CD69(-) CD28(-) HLA-DR(-) and persisted at levels twofold above baseline 6 months after SIV infection. Increased CD8(+) T-lymphocyte proliferation was associated with cell expansion, paralleled the onset of SIV-specific cytotoxic T-lymphocyte activity, and had an oligoclonal component. Thus, divergent patterns of proliferation and activation are exhibited by CD4(+) and CD8(+) T lymphocytes in early SIV infection and may determine how these cells are differentially affected in AIDS.  相似文献   

19.
CD4+CD25high regulatory cells in human peripheral blood   总被引:90,自引:0,他引:90  
Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.  相似文献   

20.
Crosslinking CD81 results in activation of TCRgammadelta T cells   总被引:1,自引:0,他引:1  
CD81 is expressed on most cells and is associated with other glycoproteins, including CD4 and CD8, to form multimolecular membrane complexes. Crosslinking of CD81 on TCRalphabeta(+) T cells results in costimulatory signals that have been proposed to be mediated via CD4 or CD8. In this study, we show that CD81 is also expressed on TCRgammadelta(+)CD4(-)CD8(-) T cells. CD81 crosslinking greatly enhanced anti-CD3 activation of both TCRalphabeta(+) (CD4+ and CD8+) and TCRgammadelta(+) T cells with regard to IFN-gamma production. However, crosslinking of CD81 molecules on TCRgammadelta(+) T cells, in the absence of anti-CD3 stimulation, resulted in cytokine production and enhanced IL-2-induced proliferation, demonstrating that physical association with CD4 or CD8 is not necessary for CD81 signaling. In contrast, crosslinking of CD81 on TCRalphabeta(+) T cells, in the absence of anti-CD3 stimulation, failed to activate these T cells. These results suggest that CD81 signaling may be mediated via a different mechanism(s) in TCRgammadelta(+) versus TCRalphabeta(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号