首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ectromelia virus (ECTV), a natural mouse pathogen and the causative agent of mousepox, is closely related to variola virus (VARV), which causes smallpox in humans. Mousepox is an excellent surrogate small-animal model for smallpox. Both ECTV and VARV encode a multitude of host response modifiers that target components of the immune system and that are thought to contribute to the high mortality rates associated with infection. Like VARV, ECTV encodes a protein homologous to the ectodomain of the host gamma interferon (IFN-gamma) receptor 1. We generated an IFN-gamma binding protein (IFN-gammabp) deletion mutant of ECTV to study the role of viral IFN-gammabp (vIFN-gammabp) in host-virus interaction and also to elucidate the contribution of this molecule to the outcome of infection. Our data show that the absence of vIFN-gammabp does not affect virus replication per se but does have a profound effect on virus replication and pathogenesis in mice. BALB/c mice, which are normally susceptible to infection with ECTV, were able to control replication of the mutant virus and survive infection. Absence of vIFN-gammabp from ECTV allowed the generation of an effective host immune response that was otherwise diminished by this viral protein. Mice infected with a vIFN-gammabp deletion mutant virus, designated ECTV-IFN-gammabp(Delta), produced increased levels of IFN-gamma and generated robust cell-mediated and antibody responses. Using several strains of mice that exhibit differential degrees of resistance to mousepox, we show that recovery or death from ECTV infection is determined by a balance between the host's ability to produce IFN-gamma and the virus' ability to dampen its effects.  相似文献   

2.
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. C57BL/6 (B6) mice are naturally resistant to mousepox due to the concerted action of innate and adaptive immune responses. Previous studies have shown that natural killer (NK) cells are a component of innate immunity that is essential for the B6 mice resistance to mousepox. However, the mechanism of NK cell-mediated resistance to OPV disease remains undefined. Here we show that B6 mice resistance to mousepox requires the direct cytolytic function of NK cells, as well as their ability to boost the T cell response. Furthermore, we show that the activating receptor NKG2D is required for optimal NK cell-mediated resistance to disease and lethality. Together, our results have important implication towards the understanding of natural resistance to pathogenic viral infections.  相似文献   

3.
Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.  相似文献   

4.
The emergence of zoonotic orthopoxvirus infections and the threat of possible intentional release of pathogenic orthopoxviruses have stimulated renewed interest in understanding orthopoxvirus infections and the resulting diseases. Ectromelia virus (ECTV), the causative agent of mousepox, offers an excellent model system to study an orthopoxvirus infection in its natural host. Here, we investigated the role of the vaccinia virus ortholog N1L in ECTV infection. Respiratory infection of mice with an N1L deletion mutant virus (ECTVΔN1L) demonstrated profound attenuation of the mutant virus, confirming N1 as an orthopoxvirus virulence factor. Upon analysis of virus dissemination in vivo, we observed a striking deficiency of ECTVΔN1L spreading from the lungs to the livers or spleens of infected mice. Investigating the immunological mechanism controlling ECTVΔN1L infection, we found the attenuated phenotype to be unaltered in mice deficient in Toll-like receptor (TLR) or RIG-I-like RNA helicase (RLH) signaling as well as in those missing the type I interferon receptor or lacking B cells. However, in RAG-1(-/-) mice lacking mature B and T cells, ECTVΔN1L regained virulence, as shown by increasing morbidity and virus spread to the liver and spleen. Moreover, T cell depletion experiments revealed that ECTVΔN1L attenuation was reversed only by removing both CD4(+) and CD8(+) T cells, so the presence of either cell subset was still sufficient to control the infection. Thus, the orthopoxvirus virulence factor N1 may allow efficient ECTV infection in mice by interfering with host T cell function.  相似文献   

5.
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.  相似文献   

6.
Current prophylactic vaccines work via the induction of B and T cell mediated memory that effectively control further replication of the pathogen after entry. In the case of therapeutic or post-exposure vaccinations the situation is far more complex, because the pathogen has time to establish itself in the host, start producing immune-inhibitory molecules and spread into distant organs. So far it is unclear which immune parameters have to be activated in order to thwart an existing lethal infection. Using the mousepox model, we investigated the immunological mechanisms responsible for a successful post-exposure immunization with modified vaccinia Ankara (MVA). In contrast to intranasal application of MVA, we found that intravenous immunization fully protected mice infected with ectromelia virus (ECTV) when applied three days after infection. Intravenous MVA immunization induced strong innate and adaptive immune responses in lethally infected mice. By using various gene-targeted and transgenic mouse strains we show that NK cells, CD4 T cells, CD8 T cells and antibodies are essential for the clearance of ECTV after post-exposure immunization. Post-exposure immunization with MVA is an effective measure in a murine model of human smallpox. MVA activates innate and adaptive immune parameters and only a combination thereof is able to purge ECTV from its host. These data not only provide a basis for therapeutic vaccinations in the case of the deliberate release of pathogenic poxviruses but possibly also for the treatment of chronic infections and cancer.  相似文献   

7.
Previous studies have suggested that, differing from model Ags, viruses that replicate extensively in the host still induce normal CD8+ T cell responses in the absence of CD28 costimulation. Because these studies were performed with viruses that do not normally cause acute disease, an important remaining question is whether CD28 costimulation is required for CD8+ T cell-mediated resistance to widely replicating but pathogenic viruses. To address this question, we studied the role of CD28 costimulation in CD8+ T cell-mediated resistance to mousepox, a disease of the mouse caused by the natural mouse pathogen, the ectromelia virus (ECTV). C57BL/6 (B6) mice are naturally resistant to mousepox, partly due to a fast and strong CD8+ T cell response. We found that B6 mice deficient in CD28 (CD28 knockout (KO)) are highly susceptible to lethal mousepox during the early stages of ECTV infection but can be protected by immunization with the antigenically related vaccinia virus (VACV) or by adoptive transfer of CD28 KO anti-VACV memory CD8+ cells. Of interest, a thorough comparison of the CD8+ T cell responses to ECTV and VACV suggests that the main reason for the susceptibility of CD28 KO mice to mousepox is a reduced response at the early stages of infection. Thus, while in the absence of CD28 costimulation the end point strength of the T cell responses to nonpathogenic viruses may appear normal, CD28 costimulation increases the speed of the T cell response and is essential for resistance to a life-threatening acute viral disease.  相似文献   

8.
Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.  相似文献   

9.
Both innate and adaptive immune responses play an important role in the recovery of the host from viral infections. In the present report, a subset of cells coexpressing CD8 and NKR-P1C (NK1.1) was found in the lungs of mice infected with influenza A virus. These cells were detected at low numbers in the lungs of uninfected mice, but represented up to 10% of the total CD8(+) T cell population at day 10 postinfection. Almost all of the CD8(+)NK1.1(+) cells were CD8alphabeta(+)CD3(+)TCRalphabeta(+) and a proportion of these cells also expressed the NK cell-associated Ly49 receptors. Interestingly, up to 30% of these cells were virus-specific T cells as determined by MHC class I tetramer staining and by intracellular staining of IFN-gamma after viral peptide stimulation. Moreover, these cells were distinct from conventional NKT cells as they were also found at increased numbers in influenza-infected CD1(-/-) mice. These results demonstrate that a significant proportion of CD8(+) T cells acquire NK1.1 and other NK cell-associated molecules, and suggests that these receptors may possibly regulate CD8(+) T cell effector functions during viral infection.  相似文献   

10.
Genetic resistance to clinical mousepox (ectromelia virus) varies among inbred laboratory mice and is characterized by an effective natural killer (NK) response and the early onset of a strong CD8(+) cytotoxic T-lymphocyte (CTL) response in resistant mice. We have investigated the influence of virus-expressed mouse interleukin-4 (IL-4) on the cell-mediated response during infection. It was observed that expression of IL-4 by a thymidine kinase-positive ectromelia virus suppressed cytolytic responses of NK and CTL and the expression of gamma interferon by the latter. Genetically resistant mice infected with the IL-4-expressing virus developed symptoms of acute mousepox accompanied by high mortality, similar to the disease seen when genetically sensitive mice are infected with the virulent Moscow strain. Strikingly, infection of recently immunized genetically resistant mice with the virus expressing IL-4 also resulted in significant mortality due to fulminant mousepox. These data therefore suggest that virus-encoded IL-4 not only suppresses primary antiviral cell-mediated immune responses but also can inhibit the expression of immune memory responses.  相似文献   

11.
While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+) subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+) NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

12.
Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.  相似文献   

13.
It is known that aging decreases natural resistance to viral diseases due to dysfunctional innate and adaptive immune responses, but the nature of these dysfunctions, particularly in regard to innate immunity, is not well understood. We have previously shown that C57BL/6J (B6) mice lose their natural resistance to footpad infection with ectromelia virus (ECTV) due to impaired maturation and recruitment of natural killer (NK) cells to the draining popliteal lymph node (dLN). More recently, we have also shown that in young B6 mice infected with ECTV, the recruitment of NK cells is dependent on a complex cascade whereby migratory dendritic cells (mDCs) traffic from the skin to the dLN, where they produce CCL2 and CCL7 to recruit inflammatory monocytes (iMOs). In the dLN, mDCs also upregulate NKG2D ligands to induce interferon gamma (IFN‐γ) expression by group 1 innate lymphoid cells (G1‐ILCs), mostly NK in cells but also some ILC1. In response to the IFN‐γ, the incoming uninfected iMOs secret CXCL9 to recruit the critical NK cells. Here, we show that in aged B6 mice, the trafficking of mDCs to the dLN in response to ECTV is decreased, resulting in impaired IFN‐γ expression by G1‐ILCs, reduced accumulation of iMOs, and attenuated CXCL9 production by iMOs, which likely contributes to decrease in NK cell recruitment. Together, these data indicate that defects in the mDC response to viral infection during aging result in a reduced innate immune response in the dLN and contribute to increased susceptibility to viral disease in the aged.  相似文献   

14.
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.  相似文献   

15.
Remakus S  Rubio D  Ma X  Sette A  Sigal LJ 《Journal of virology》2012,86(18):9748-9759
The antigens recognized by individual CD8(+) T cells are small peptides bound to major histocompatibility complex (MHC) class I molecules. The CD8(+) T cell response to a virus is restricted to several peptides, and the magnitudes of the effector as well as memory phases of the response to the individual peptides are generally hierarchical. The peptide eliciting a stronger response is called immunodominant (ID), and those with smaller-magnitude responses are termed subdominant (SD). The relative importance of ID and SD determinants in protective immunity remains to be fully elucidated. We previously showed that multispecific memory CD8(+) T cells can protect susceptible mice from mousepox, an acute lethal viral disease. It remained unknown, however, whether CD8(+) T cells specific for single ID or SD peptides could be protective. Here, we demonstrate that immunization with dendritic cells pulsed with ID and some but not all SD peptides induces memory CD8(+) T cells that are fully capable of protecting susceptible mice from mousepox. Additionally, while natural killer (NK) cells are essential for the natural resistance of nonimmune C57BL/6 (B6) to mousepox, we show that memory CD8(+) T cells of single specificity also protect B6 mice depleted of NK cells. This suggests it is feasible to produce effective antiviral CD8(+) T cell vaccines using single CD8(+) T cell determinants and that NK cells are no longer essential when memory CD8(+) T cells are present.  相似文献   

16.
Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (~80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.  相似文献   

17.
Vasoactive intestinal peptide (VIP) induces regulatory dendritic cells (DC) in vitro that inhibit cellular immune responses. We tested the role of physiological levels of VIP on immune responses to murine CMV (mCMV) using VIP-knockout (VIP-KO) mice and radiation chimeras engrafted with syngenic VIP-KO hematopoietic cells. VIP-KO mice had less weight loss and better survival following mCMV infection compared with wild-type (WT) littermates. mCMV-infected VIP-KO mice had lower viral loads, faster clearance of virus, with increased numbers of IFN-γ(+) NK and NKT cells, and enhanced cytolytic activity of NK cells. Adaptive antiviral cellular immunity was increased in mCMV-infected VIP-KO mice compared with WT mice, with more Th1/Tc1-polarized T cells, fewer IL-10(+) T cells, and more mCMV-M45 epitope peptide MHC class I tetramer(+) CD8(+) T cells (tetramer(+) CD8 T cells). mCMV-immune VIP-KO mice had enhanced ability to clear mCMV peptide-pulsed target cells in vivo. Enhanced antiviral immunity was also seen in WT transplant recipients engrafted with VIP-KO hematopoietic cells, indicating that VIP synthesized by neuronal cells did not suppress immune responses. Following mCMV infection there was a marked upregulation of MHC-II and CD80 costimulatory molecule expression on DC from VIP-KO mice compared with DC from WT mice, whereas programmed death-1 and programmed death ligand-1 expression were upregulated in activated CD8(+) T cells and DC, respectively, in WT mice, but not in VIP-KO mice. Because the absence of VIP in immune cells increased innate and adaptive antiviral immunity by altering costimulatory and coinhibitory pathways, selective targeting of VIP signaling represents an attractive therapeutic target to enhance antiviral immunity.  相似文献   

18.
Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.  相似文献   

19.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

20.
To assess whether nitric oxide synthase 2 (NOS2) fulfills the criteria of an innate resistance locus against an acute viral infection, we inoculated genetically deficient NOS2−/− mice with virulent ectromelia virus (EV), the causative agent of mousepox. NOS2−/− mice proved highly susceptible to EV yet showed no diminution in other well-characterized anti-EV immune responses, i.e., gamma interferon secretion and NK cell and EV-specific cytotoxic T lymphocyte activities. Thus, the NOS2 locus can be considered a critical monogenic determinant of EV resistance that contributes to host survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号