首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection.  相似文献   

2.
Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection.  相似文献   

3.
The rotavirus capsid is composed of three concentric protein layers. Proteins VP4 and VP7 comprise the outer layer. VP4 forms spikes, is the viral attachment protein, and is cleaved by trypsin into VP8* and VP5*. VP7 is a glycoprotein and the major constituent of the outer protein layer. Both VP4 and VP7 induce neutralizing and protective antibodies. To gain insight into the virus neutralization mechanisms, the effects of neutralizing monoclonal antibodies (MAbs) directed against VP8*, VP5*, and VP7 on the decapsidation process of purified OSU and RRV virions were studied. Changes in virion size were followed in real time by 90 degrees light scattering. The transition from triple-layered particles to double-layered particles induced by controlled low calcium concentrations was completely inhibited by anti-VP7 MAbs but not by anti-VP8* or anti-VP5* MAbs. The inhibitory effect of the MAb directed against VP7 was concentration dependent and was abolished by papain digestion of virus-bound antibody under conditions that generated Fab fragments but not under conditions that generated F(ab')(2) fragments. Electron microscopy showed that RRV virions reacted with an anti-VP7 MAb stayed as triple-layered particles in the presence of excess EDTA. Furthermore, the infectivity of rotavirus neutralized via VP8*, but not that of rotavirus neutralized via VP7, could be recovered by lipofection of neutralized particles into MA-104 cells. These data are consistent with the notion that antibodies directed at VP8* neutralize by inhibiting binding of virus to the cell. They also indicate that antibodies directed at VP7 neutralize by inhibiting virus decapsidation, in a manner that is dependent on the bivalent binding of the antibody.  相似文献   

4.
R Gajardo  P Vende  D Poncet    J Cohen 《Journal of virology》1997,71(3):2211-2216
Rotavirus maturation and stability of the outer capsid are calcium-dependent processes. It has been shown previously that the concentration of Ca2+-solubilizing outer capsid proteins from rotavirus particles is dependent on the virus strain. This property of viral particles has been associated with the gene coding for VP7 (gene 9). In this study the correlation between VP7 and resistance to low [Ca2+] was confirmed by analyzing the origin of gene 9 from reassortant viruses prepared under the selective pressure of low [Ca2+]. After chemical mutagenesis, we selected mutant viruses of the bovine strain RF that are more resistant to low [Ca2+]. The genes coding for the VP7 proteins of these independent mutants have been sequenced. Sequence analysis confirmed that these mutants are independent and revealed that all mutant VP7 proteins have proline 75 changed to leucine and have an outer capsid that solubilized at low [Ca2+]. The mutation of proline 279 to serine is found in all but two mutants. The phenotype of mutants having a single proline change can be distinguished from the phenotype of mutants having two proline changes. Sequence analysis showed that position 75 is in a region (amino acids 65 to 78) of great variability and that proline 75 is present in most of the bovine strains. In contrast, proline 279 is in a conserved region and is conserved in all the VP7 sequences in data banks. This region is rich in oxygenated residues that are correctly allocated in the metal-coordinating positions of the Ca2+-binding EF-hand structure pattern, suggesting that this region is important in the Ca2+ binding of VP7.  相似文献   

5.
Full-length cDNA of the VP4 gene of porcine rotavirus strain OSU was cloned into adenovirus type 5 (Ad5) downstream of the E3 promoter. The plaque-purified recombinant (Ad5-OSU VP4) expressed apparently authentic VP4 rotavirus outer capsid protein. The protein had the same molecular size (85 kDa) and electrophoretic mobility as did native OSU VP4 and was immunoprecipitated by a polyclonal antiserum raised to OSU VP4. Cotton rats that possessed prechallenge rotavirus antibodies that may have been acquired either passively or actively developed neutralizing antibodies against the OSU strain following intranasal administration of the live Ad5-OSU VP4 recombinant. The neutralizing activity was enhanced by a parenteral booster injection with baculovirus-expressed OSU VP4 antigen. In addition, a high titer of neutralizing antibodies was induced by parenteral administration of the latter antigen and subsequent intranasal administration of the Ad5-OSU VP4 recombinant. These observations indicate that the VP4 outer capsid protein of a rotavirus strain can be expressed by a recombinant adenovirus vector. This approach warrants further exploration for immunization against rotavirus disease.  相似文献   

6.
Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies.  相似文献   

7.
A single-gene substitution reassortant 11-1 was generated from two porcine rotaviruses, OSU (serotype 5) and Gottfried (serotype 4). This reassortant derived 10 genes, including gene 4 encoding VP3, from the OSU strain and only gene 9, encoding a major neutralization glycoprotein (VP7), from the Gottfried strain and was thus designated VP3:5; VP7:4. Oral administration of this reassortant to colostrum-deprived gnotobiotic newborn pigs induced a high level of neutralizing antibodies not only to Gottfried VP7 but also to OSU VP3, thus demonstrating that VP3 is as potent an immunogen as VP7 in inducing neutralizing antibodies during experimental oral infection. Gnotobiotic piglets infected previously with the reassortant were completely resistant to oral challenge with the virulent Gottfried strain (VP3:4; VP7:4), as indicated by failure of symptoms to develop and lack of virus shedding. Similarly, prior infection with the reassortant induced almost complete protection against diarrhea and significant restriction of virus replication after oral challenge with the virulent OSU strain (VP3:5; VP7:5). Thus, it appears that (i) the immune system of the piglet responds equally well to two rotavirus outer capsid proteins, VP3 and VP7, during primary enteric rotavirus infection; (ii) antibody to VP3 and antibody to VP7 are each associated with resistance to diarrhea; and (iii) infection with a reassortant rotavirus bearing VP3 and VP7 neutralization antigens derived from two viruses of different serotype induces immunity to both parental viruses. The relevance of these findings to the development of effective reassortant rotavirus vaccines is discussed.  相似文献   

8.
We previously reported that the expression of rotavirus phenotypes by reassortants was affected by recipient genetic background and proposed specific interactions between the outer capsid proteins VP4 and VP7 as the basis for the phenotypic effects (D. Chen, J. W. Burns, M. K. Estes, and R. F. Ramig, Proc. Natl. Acad. Sci. USA 86:3743-3747, 1989). A neutralizing, cross-reactive VP4-specific monoclonal antibody (MAb), 2G4, was used to probe the protein-protein interactions. The VP4 specificity of 2G4 was confirmed by immunoblot analysis. MAb 2G4 reacted with both standard (SA11-C13) and variant rotavirus SA11 (SA11-4F) but did not react with bovine rotavirus B223 as determined by plaque reduction neutralization (PRN) and enzyme-linked immunosorbent assay (ELISA). When a panel of SA11-4F/B223 and SA11-Cl3/B223 reassortants in purified or crude lysate form that had been grown in the presence or absence of trypsin was analyzed with MAb 2G4 by PRN and ELISA, the results with some reassortants were unexpected. That is, MAb 2G4 reacted with VP4 of SA11 parental origin (4F or C13) when it was assembled into capsids with the homologous SA11 VP7 but failed to react with VP4 of SA11 assembled into capsids with heterologous B223 VP7. Conversely, MAb 2G4 failed to react with VP4 of B223 parental origin when it was assembled into capsids with homologous B223 VP7 but did react with B223 VP4 assembled into capsids with the heterologous SA11 VP7. Similar reactivity was observed when 2G4 was used to immunoprecipitate purified double-shelled virions. When soluble unassembled viral proteins were analyzed by ELISA, the 2G4 reactive pattern was as predicted from the parental origin of VP4. That is, 2G4 reacted with the soluble VP4 of reassortants having VP4 from SA11-Cl3 or SA11-4F and failed to react with VP4 of B223 origin, regardless of the origin of VP7. PRN and ELISA results obtained with nonglycosylated viruses revealed that the unexpected reactivity of 2G4 with virus particles was not the result of differential glycosylation of VP7 and epitope masking. These results indicate that the 2G4 epitope existed in the soluble form of VP4 encoded by SA11-Cl3 or SA11-4F but not in soluble B223 VP4. On the other hand, in assembled virions, the presentation of the 2G4 epitope on VP4 was unexpected in some reassortants and was affected by the specific interactions between VP4 and VP7 of heterologous parental origin.  相似文献   

9.
10.
X S Chen  T Stehle    S C Harrison 《The EMBO journal》1998,17(12):3233-3240
A complex of the polyomavirus internal protein VP2/VP3 with the pentameric major capsid protein VP1 has been prepared by co-expression in Escherichia coli. A C-terminal segment of VP2/VP3 is required for tight association, and a crystal structure of this segment, complexed with a VP1 pentamer, has been determined at 2.2 A resolution. The structure shows specific contacts between a single copy of the internal protein and a pentamer of VP1. These interactions were not detected in the previously described structure of the virion, but the location of VP2 in the recombinant complex is consistent with features in the virion electron-density map. The C-terminus of VP2/VP3 inserts in an unusual, hairpin-like manner into the axial cavity of the VP1 pentamer, where it is anchored strongly by hydrophobic interactions. The remainder of the internal protein appears to have significant flexibility. This structure restricts possible models for exposure of the internal proteins during viral entry.  相似文献   

11.
Simian rotavirus (RRV) and murine rotavirus (EDIM-RW) differ dramatically in the oral inoculum required to cause diarrheal disease in neonatal mouse pups and in their ability to spread and cause disease in uninoculated littermates. A genetic approach was used to explore the molecular basis of these differences. Reassortant viruses were produced in vivo by coinfecting infant mice with RRV and EDIM-RW. Reassortant viruses were isolated by plaque purification of progeny virus obtained from mouse pup intestines on MA104 cells. The plaque-purified reassortants were evaluated for 50% diarrhea dose (DD50) and for the ability to spread and cause diarrhea in uninoculated littermates. The parental RRV strain had a DD50 of 10(5) PFU per animal, while the EDIM-RW parental strain had a DD50 of less than 1 PFU per animal. RRV never spreads from inoculated to uninoculated littermates and causes disease. Twenty-three reassortants were tested. Of great interest were the reassortants D1/5 and C3/2, which derived genes 4 and 7 (encoding VP4 and VP7) from RRV. These viruses had a DD50 similar or identical to that of EDIM-RW and spread efficiently from inoculated mouse pups to uninoculated pups. We conclude that the major outer capsid proteins VP4 and VP7 are not primarily responsible for virulence or host range restriction in the mouse model using a homologous murine rotavirus.  相似文献   

12.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

13.
14.
Bovine rotavirus proteins were analysed by a panel of monoclonal antibodies. Glycosylated epitopes were identified on both inner and outer capsid proteins (VP6 and VP7 respectively). VP7 possessed a periodate insensitive epitope which was, however, sensitive to endoglycosidase H, mixed glycosidases and to protease treatment. This epitope was not detected on viruses grown in the presence of 2-deoxy-D-glucose or tunicamycin. An epitope was detected on VP6 which was sensitive to periodate oxidation. The blotted protein reacted with a glycan assay kit; yet the epitope was not affected by endoglycosidase H and was found on viruses grown in the presence of 2-deoxy-D-glucose or tunicamycin. These results suggest that VP7 and VP6 epitopes are carbohydrate dependent. The VP7 epitope contains an N-linked carbohydrate moiety in contrast to the VP6 epitope which appears to contain O-linked glycosyl units.  相似文献   

15.
Rhesus rotavirus (RRV) gene 4 was cloned into lambda bacteriophage, inserted into a polyhedrin promoter shuttle plasmid, and expressed in Sf9 cells by a recombinant baculovirus. The baculovirus-expressed VP4 protein made up approximately 5% of the Spodoptera frugiperda-infected cell protein. Monoclonal antibodies that neutralize the virus bound to the expressed VP4 polypeptide, indicating that the expressed VP4 protein was antigenically indistinguishable from viral VP4. In addition, we have determined that the baculovirus-expressed VP4 protein bound to erythrocytes and functions as the RRV hemagglutinin. The endogenous hemagglutinating activity of the VP4 protein, like the virus, was inhibited by guinea pig antirotavirus hyperimmune serum and by VP4-specific neutralizing monoclonal antibodies. The human erythrocyte protein, glycophorin, also inhibited hemagglutination by RRV or the expressed VP4 protein and appears to be the rotavirus erythrocyte receptor. The baculovirus-expressed VP4 protein was conserved functionally and antigenically in the absence of other outer or inner capsid rotavirus components and represents a logical candidate for future immunological studies.  相似文献   

16.
17.
Group A rotaviruses are classified into serotypes, based on the reactivity pattern of neutralizing antibodies to VP4 and VP7, as well as into subgroups (SGs), based on non-neutralizing antibodies directed against VP6. The inner capsid protein (VP2) has also been described as a SG antigen; however, little is known regarding the molecular determinants of VP2 SG specificity. In this study, we characterize VP2 SGs by correlating genetic markers with the immunoreactivity of the SG-specific monoclonal antibody (YO-60). Our results show that VP2 proteins similar in sequence to that of the prototypic human strain Wa are recognized by YO-60, classifying them as VP2 SG-II. In contrast, proteins not bound by YO-60 are similar to those of human strains DS-1 or AU-1 and represent VP2 SG-I. Using a mutagenesis approach, we identified residues that determine recognition by either YO-60 or the group A-specific VP2 monoclonal antibody (6E8). We found that YO-60 binds to a conformationally dependent epitope that includes Wa VP2 residue M328. The epitope for 6E8 is also contingent upon VP2 conformation and resides within a single region of the protein (Wa VP2 residues A440 to T530). Using a high-resolution structure of bovine rotavirus double-layered particles, we predicted these epitopes to be spatially distinct from each other and located on opposite surfaces of VP2. This study reveals the extent of genetic variation among group A rotavirus VP2 proteins and illuminates the molecular basis for a previously described SG specificity associated with the rotavirus inner capsid protein.  相似文献   

18.
Bluetongue virus serotype 10 (BTV-10) VP7, expressed by insect cells infected with the recombinant baculovirus, has been purified and crystallized. Two crystal forms suitable for X-ray analysis have been obtained. Type I crystals belong to space group P6(3)22 with a = b = 95.2 A, c = 181.0 A, alpha = beta = 90 degrees gamma = 120.0 degrees, and contain a single subunit in the crystallographic asymmetric unit. They diffract to dmin = 3.0 A. Type II crystals belong to space group P2(1) with a = 69.4 A, b = 97.1 A, c = 71.4 A, beta = 109.0 degrees, and contain a trimer in the crystallographic asymmetric unit. They diffract to dmin = 2.1 A. These results, together with solution studies, show that the molecule is a trimer.  相似文献   

19.
Four hybridoma cell lines producing monoclonal antibodies against intact polyoma virions were produced and characterized. These antibodies were selected for their ability to react with polyoma virions in an enzyme-linked immunosorbent assay. The antibodies immunoprecipitated polyoma virions and specifically recognized the major capsid protein VP1 on an immunoblot. Distinct VP1 isoelectric species were immunoprecipitated from dissociated virion capsomere preparations. Two-dimensional gel electrophoresis demonstrated antibody reactivity with specific VP1 species. Monoclonal antibodies E7 and G9 recognized capsomeres containing VP1 species D, E, and F, while monoclonal antibodies C10 and D3 recognized capsomeres containing species B and C. Two of the monoclonal antibodies, E7 and G9, were capable of neutralizing viral infection and inhibiting hemagglutination. The biological activity of the monoclonal antibodies correlated well with the biological function of the species with which they reacted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号