首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P74, an envelope protein of the occlusion-derived virus (ODV) of Autographa californica M nucleopolyhedrovirus (AcMNPV), is critical for oral infection of Trichoplusia ni larvae. The role of P74 during primary infection, however, is unknown. Here we provide evidence that P74 facilitates binding of AcMNPV ODV to a specific receptor within the larval midgut epithelia of another host species, Heliothis virescens. We adapted a fluorescence dequenching assay to compare binding, fusion, and competition of wild-type AcMNPV ODV in vivo with itself and with the ODV of a p74-deficient AcMNPV mutant. We found that relative to wild-type ODV, binding and fusion of ODV deficient in P74 were both qualitatively and quantitatively different. Unlike wild-type ODV, an excess of P74-deficient ODV failed to compete effectively with wild-type ODV binding, and the overall binding level of the mutant ODV was one-third that of the wild type. These results implicated P74 as an ODV attachment protein that binds to a specific receptor on primary target cells within the midgut.  相似文献   

2.
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed.  相似文献   

3.
Spodoptera frugiperda caterpillars were infected with a mutant of Autographa californica M nucleopolyhedrovirus lacking the antiapoptotic p35 gene. Viral infectivity, replication, and spread were substantially reduced compared to that of a control revertant virus. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling confirmed that apoptosis occurred in mutant-infected caterpillars, thus directly correlating reduced infectivity and in vivo induction of apoptosis.  相似文献   

4.
Cellular cathepsins are required for Ebola virus infection and are believed to proteolytically process the Ebola virus glycoprotein (GP) during entry. However, the significance of cathepsin cleavage during infection remains unclear. Here we demonstrate a role for cathepsin L (CatL) cleavage of Ebola virus GP in the generation of a stable 18-kDa GP1 viral intermediate that exhibits increased binding to and infectivity for susceptible cell targets. Cell binding to a lymphocyte line was increased when CatL-proteolysed pseudovirions were used, but lymphocytes remained resistant to Ebola virus GP-mediated infection. Genetic removal of the highly glycosylated mucin domain in Ebola virus GP resulted in cell binding similar to that observed with CatL-treated full-length GP, and no overall enhancement of binding or infectivity was observed when mucin-deleted virions were treated with CatL. These results suggest that cathepsin cleavage of Ebola virus GP facilitates an interaction with a cellular receptor(s) and that removal of the mucin domain may facilitate receptor binding. The influence of CatL in Ebola virus GP receptor binding should be useful in future studies characterizing the mechanism of Ebola virus entry.  相似文献   

5.
Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovirus-infected cells increased expression of LEF-3, LEF-4, and P35. In contrast, expression of the structural genes coding for P39 and polyhedrin was suppressed while expression of genes coding for P10 and GP64 was unaffected. In the absence of DBP, viral DNA replication sites were formed, indicating replication of viral DNA. Electron microscopy studies, however, revealed a loss of formation of polyhedra and virus envelopment, suggesting that the primary role of DBP is viral formation rather than viral DNA replication.  相似文献   

6.
To develop complementary baculovirus-based tools for gene delivery and display technologies, the interaction of occlusion-derived baculovirus (ODV) with human cells, and the functionality of the P74 ODV envelope protein for display of the IgG-binding Z domains (ZZP74) were evaluated. The cellular binding of ODV was concentration-dependent and saturable. Only minority of the bound virions were internalized at both 37 and 4 degrees C, suggesting usage of direct membrane fusion as the entry mode. The intracellular transport of ODV was confined in vesicular structures peripheral to the plasma membrane, impeding subsequent nuclear entry and transgene expression. Transduction of ODV was not rescued by mimicking the preferred alkaline environment and lowered temperature of the ODV infective entry, or following treatment with the microtubule depolymerizing agent nocodazole or with the histone deacetylase inhibitor sodium butyrate. Similar to unmodified P74, the ZZP74 chimera localized in the intranuclear ring zone, and was enriched in virus-induced microvesicles. However, Western blotting of ODV and budded virions (BV), as well as viral envelope and nucleocapsid fractions combined with functional infection/transduction studies revealed incorporation of the ZZP74 fusion protein into viral nucleocapsids. The ZZP74 BV preserved normal infectivity, polypeptide profile, and morphology, but became incapable of entering and transducing human cells.  相似文献   

7.
Intra- and inter-specific effects of cotton, soybean, and clover on the time until death of Helicoverpa zea (Boddie) and Heliothis virescens (F.) larvae lethally infected with H. zea nucleopolyhedrovirus (HzSNPV) were evaluated in the laboratory. In the first test, on second instar only, the time until death of lethally infected larvae of both species differed with the plant tissues (vegetative or reproductive) and plant species. The total viral activity produced per larva in LC(50) units (occluded viral bodies (OBs) per larva/LC(50) in OBs/mm(2) of diet surface) was greater from H. virescens larvae fed vegetative than reproductive tissues of all host plants, but from H. zea virus production was greater only when fed vegetative tissue of soybean. In a second test that compared second and fourth instar H. virescens on cotton, total viral activity from larvae treated in both instars was greater when fed vegetative than reproductive tissues. Results of these tests suggest that the ability of host plants to influence baculovirus disease is more complex than previously believed. When examining the epizootic potential of a baculovirus, more attention must be given to the effects of the host plant on the insect-virus interactions.  相似文献   

8.
Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP(64/F), a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33 degrees C than at 37 degrees C. The open reading frames (ORFs) encoding GP64 or GP(64/F), along with two marker ORFs encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP(64/F) protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSDeltaSH,G,F/GP64 or RSDeltaSH,G,F/GP(64/F), respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSDeltaSH [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP(64/F) proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSDeltaSH,G,F/GP64 and RSDeltaSH,G,F/GP(64/F) replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.  相似文献   

9.
A Angulo  E Viuela    A Alcamí 《Journal of virology》1993,67(9):5463-5471
The African swine fever virus protein p12, involved in virus attachment to the host cell, has an apparent molecular mass of 17 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. We have also identified 12- and 10-kDa forms of the p12 protein in infected Vero cells and found that the mature 17-kDa protein is the only form present in virus particles. The p12 protein has been produced in large amounts in Spodoptera frugiperda insect cells infected with a recombinant baculovirus. A 17-kDa protein that possessed the biological properties of the viral protein was produced, since it bound to susceptible Vero cells and not to receptor-negative L cells, which do not support virus replication. The binding of the baculovirus-expressed protein p12 to Vero cells was specifically blocked by virus particles. In addition, the recombinant protein purified by immunoaffinity chromatography blocked the specific binding of virus particles to susceptible cells and prevented infection, demonstrating that the p12 protein mediates the attachment of virions to specific receptors and indicating that blocking the p12-mediated interaction between African swine fever virus and receptors in Vero cells can inhibit infection. However, although antibodies specific for protein p12 are induced in natural infections and in animals inoculated with inactivated virus or recombinant protein p12, these antisera did not inhibit virus binding to the host cell or neutralize virus infectivity.  相似文献   

10.
Wang M  Tan Y  Yin F  Deng F  Vlak JM  Hu Z  Wang H 《Journal of virology》2008,82(19):9800-9804
The GP64 and F proteins were previously identified as the sole functional envelope fusion proteins in Baculoviridae. F-like proteins, present only in group I nucleopolyhedroviruses (NPVs), are remnant, nonfunctional F proteins. In this report, we describe the effect of the presence or absence of the F-like protein Ac23 in a gp64-null Autographa californica multinucleocapsid NPV pseudotyped with the F protein from Spodoptera exigua multicapsid NPV (SeF). We found that the presence of Ac23 elevates the infectivity of the pseudotyped virus. This is in contrast to the results of Lung et al. (J. Virol. 76:5729-5736, 2002), who found no such effect. The possible reasons for the differing results are discussed.  相似文献   

11.
12.
Spleen necrosis virus (SNV) is an amphotropic retrovirus originally isolated from a duck. Although of avian origin, it also replicates on some mammalian cells. SNV-derived retroviral vectors work with high efficiency and have a high potential for various gene transfer applications. However, little is known about the envelope-receptor interactions of this virus. We constructed a series of recombinant envelope proteins to characterize the SU peptide of SNV. We found that, in contrast to the envelope proteins of other retroviruses, truncated envelope proteins of SNV are transported to the cell surface. Surprisingly, particles displaying truncated envelope proteins can still infect cells, although at reduced efficiencies. Furthermore, these proteins can confer partial superinfection interference. Our data suggest that peptides throughout SU are involved in envelope-receptor interactions. To more precisely determine the localization of the main receptor binding domain, point mutations were introduced at certain regions of the SNV SU which are highly conserved among retroviruses belonging to the same receptor interference group. We identified one point mutation in the middle of SU (position 192) which drastically reduced infectivity and strongly reduced the ability to confer superinfection interference. The level of expression was not abolished, and translocation to the cell membrane of the mutant envelope occurred efficiently. This indicates that amino acid 192 may be directly involved in receptor binding.  相似文献   

13.
14.
Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe(40) to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe(40) residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation.  相似文献   

15.
In situ photoaffinity labelling of the human androgen receptor has been performed in the LNCaP (Lymph Node Carcinoma of the Prostate) cell line. The covalently labelled receptors were identified by SDS-PAGE. Intact LNCaP cells, incubated with [3H]-R1881 and subsequently irradiated with u.v. light and directly solubilized in SDS-buffer, revealed two photolabelled protein bands at 110 and 50 kDa. Irradiation of intact cells and subsequent isolation of nuclei followed by extraction with 0.5 M NaCl resulted in one major photolabelled protein band at 110 kDa. The labelling of this band could be completely suppressed by a 100-fold molar excess of non-radioactive R1881. Photolabelling of androgen receptors in a cytosolic preparation of LNCaP cells after anion exchange chromatography resulted in a much lower labelling efficiency compared with the in situ labelling procedure, although the androgen receptor was purified 100-fold. The steroid binding domain of the human androgen receptor has been partially mapped with chymotrypsin and S. aureus V8 protease digestion. Proteolytic digestion with chymotrypsin of purified photoaffinity-labelled 110 kDa human androgen receptor resulted in the generation of a 15 kDa peptide which still contains the covalently linked hormone. It is concluded that the in situ photoaffinity labelling technique can be applied successfully for characterization of the steroid binding domain of androgen receptors in prostate cancer cells and in other androgen target cells. Furthermore, it was demonstrated that the human androgen receptor is a monomer with a molecular mass of 110 kDa, of which the steroid binding site is confined to a 15 kDa domain.  相似文献   

16.
The constitutively active G-protein-coupled receptor and viral oncogene ORF74, encoded by Kaposi sarcoma-associated herpesvirus (human herpesvirus 8), binds a broad range of chemokines, including CXCL1 (agonist), CXCL8 (neutral ligand), and CXCL10 (inverse agonist). Although chemokines interact with the extracellular N terminus and loops of the receptor, we demonstrate that helix 8 (Hx8) in the intracellular carboxyl tail (C-tail) of ORF74 directs chemokine binding. Partial deletion of the C-tail resulted in a phenotype with reduced constitutive activity but intact regulation by ligands. Complete deletion of the C-tail, including Hx8, resulted in an inactive phenotype that lacks CXCL8 binding sites and has an increased number of binding sites for CXCL10. Similar effects were obtained with the single R7.61(322)W or Q7.62(323)P mutations in Hx8. We propose that the conserved charged or polar side chain at position 7.61 has a specific role in stabilizing the end of transmembrane domain 7 (TM7). Disruption of Hx8 by deletion or mutation distorts an H-bonding network, involving highly conserved amino acids within TM2, TM7, and Hx8, that is crucial for positioning of the TM domains, coupling to Galphaq, and CXCL8 binding. Thus, Hx8 appears to exert a key role in receptor stabilization through the conserved residue R7.61, directing the ligand binding profile of ORF74 and likely also that of other class A G-protein-coupled receptors.  相似文献   

17.
Suppression of host protein synthesis in cells infected by poliovirus and certain other picornaviruses involves inactivation of the cap-binding protein complex. Inactivation of this complex has been correlated with the proteolytic cleavage of p220, a component of the cap-binding protein complex. Since picornaviral RNA is not capped, it continues to be translated as the cap-binding protein complex is inactivated. The cleavage of p220 can be induced to occur in vitro, catalyzed by extracts from infected cells or by reticulocyte lysates translating viral RNA. Expression of polioviral protease 2A is sufficient to induce p220 cleavage, and the presence in 2A of an 18-amino-acid sequence representing a putative cysteine protease active site correlates with the ability of different picornaviruses to induce p220 cleavage. Foot-and-mouth disease virus (FMDV) infection induces complete cleavage of p220, yet the FMDV genome codes for a 2A protein of only 16 amino acids, which does not include the putative cysteine protease active site. Using cDNA plasmids encoding various regions of the FMDV genome, we have determined that the leader protein is required to initiate p220 cleavage. This is the first report of a function for the leader protein, other than that of autocatalytic cleavage from the FMDV polyprotein.  相似文献   

18.
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.  相似文献   

19.
20.
Devaux P  Cattaneo R 《Journal of virology》2004,78(21):11632-11640
The measles virus (MV) P gene codes for three proteins: P, an essential polymerase cofactor, and V and C, which have multiple functions but are not strictly required for viral propagation in cultured cells. V shares the amino-terminal domain with P but has a zinc-binding carboxyl-terminal domain, whereas C is translated from an overlapping reading frame. During replication, the P protein binds incoming monomeric nucleocapsid (N) proteins with its amino-terminal domain and positions them for assembly into the nascent ribonucleocapsid. The P protein amino-terminal domain is natively unfolded; to probe its conformational flexibility, we fused it to the green fluorescent protein (GFP), thereby also silencing C protein expression. A recombinant virus (MV-GFP/P) expressing hybrid GFP/P and GFP/V proteins in place of standard P and V proteins and not expressing the C protein was rescued and produced normal ratios of mono-, bi-, and tricistronic RNAs, but its replication was slower than that of the parental virus. Thus, the P protein retained nearly intact polymerase cofactor function, even with a large domain added to its amino terminus. Having noted that titers of cell-associated and especially released MV-GFP/P were reduced and knowing that the C protein of the related Sendai virus has particle assembly and infectivity factor functions, we produced an MV-GFP/P derivative expressing C. Intracellular titers of this virus were almost completely restored, and those of released virus were partially restored. Thus, the MV C protein is an infectivity factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号