首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
E.coli aspartokinase II-homoserine dehydrogenase II is, as aspartokinase I-homoserine dehydrogenase I, composed of three globular domains: the N-terminal domain is endowed with kinase activity; the C-terminal domain carries the dehydrogenase activity. These two parts of the polypeptide chain are separated by a central inactive domain. Thus, the polypeptide chains of the two multifunctional proteins are homologous not only in their sequence but also in their triglobular domain structure.  相似文献   

2.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

3.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

4.
Recent work (Hizi and Yagil [1974] Eur. J. Biochem. 45: 211–221, and Kelly et. al. [1975] Fed. Proc. 34: 881) suggests that the marked increase in rat liver glucose-6-phosphate dehydrogenase activity which is observed upon feeding an animal a high carbohydrate diet does not involve an increase in the total amount of enzyme present. In contrast, the data presented herein involving immunological titrations of rat liver glucose-6-phosphate dehydrogenase indicates that the increase in enzyme activity resulting from feeding a high carbohydrate diet does involve an increase in the total amount of enzyme present.  相似文献   

5.
Bioluminescence rises very rapidly in the later stages of growth of Beneckea harveyi due to the induction of luciferase activity. This enzyme catalyzes the in vitro oxidation of FMNH2 and a long chain aliphatic aldehyde resulting in the emission of light. The present experiments report the discovery of an aldehyde dehydrogenase in Beneckea harveyi which is remarkably similar to luciferase in its specificity for long chain aliphatic aldehydes. Furthermore, the activity of this enzyme is shown to be induced at the same time as luciferase thus providing strong evidence for a functional implication of aldehyde dehydrogenase in the bioluminescent system of Beneckea harveyi.  相似文献   

6.
d-β-Hydroxybutyrate dehydrogenase of beef heart mitochondria is a lipid-requiring enzyme, bound to the inner membrane. The orientation of this enzyme in the membrane has been studied by comparing the characteristics of the enzyme in mitochondria and ‘inside-out’ submitochondrial vesicles. We observe that the enzymic activity is (1) latent in intact mitochondria; (2) relatively stable to trypsin digestion in mitochondria but rapidly inactivated in submitochondrial vesicles by this treatment; and (3) released more rapidly from submitochondrial vesicles by phospholipase A2 digestion than from mitochondria. Conclusive evidence that d-β-hydroxybutyrate dehydrogenase is localized on the matrix face of the mitochondrial inner membrane is provided by the correlation that the enzyme is released from submitochondrial vesicles before the membrane becomes leaky to cytochrome c. The arrangement of d-β-hydroxybutyrate dehydrogenase in the membrane is discussed within a generalized classification of the orientation of proteins in membranes. The evidence indicates that d-β-hydroxybutyrate dehydrogenase is an amphipathic molecule and as such is inlaid in the membrane, i.e. the enzyme is partially inserted into the hydrophobic milieu of the membrane, with the polar, functional end extending into the aqueous milieu.  相似文献   

7.
Metabolism of aspartate in Mycobacterium smegmatis   总被引:2,自引:0,他引:2  
Mycobacterium smegmatis grows best on L-asparagine as a sole nitrogen source; this was confirmed. [14C]Aspartate was taken up rapidly (46 nmol.mg dry cells-1.h-1 from 1 mM L-asparagine) and metabolised to CO2 as well as to amino acids synthesised through the aspartate pathway. Proportionately more radioactivity appeared in the amino acids in bacteria grown in medium containing low nitrogen. Activities of aspartokinase and homoserine dehydrogenase, the initial enzymes of the aspartate pathway, were carried by separate proteins. Aspartokinase was purified as three isoenzymes and represented up to 8% of the soluble protein of M. smegmatis. All three isoenzymes contained molecular mass subunits of 50 kDa and 11 kDa which showed no activity individually; full enzyme activity was recovered on pooling the subunits. Km values for aspartate were: aspartokinases I and III, 2.4 mM; aspartokinase II, 6.4 mM. Aspartokinase I was inhibited by threonine and homoserine and aspartokinase III by lysine, but aspartokinase II was not inhibited by any amino acids. Aspartokinase activity was repressed by methionine and lysine with a small residue of activity attributable to unrepressed aspartokinase I. Homoserine dehydrogenase activity was 96% inhibited by 2 mM threonine; isoleucine, cysteine and valine had lesser effects and in combination gave additive inhibition. Homoserine dehydrogenase was repressed by threonine and leucine. Only amino acids synthesised through the aspartate pathway were tested for inhibition and repression. Of these, only one, meso-diaminopimilate, had no discernable effect on either enzyme activity.  相似文献   

8.
2-Amino-4-oxo-5-chloropentanoic acid inactivates specifically the homoserine dehydrogenase activity of the bifunctional enzyme, aspartokinase I--homoserine dehydrogenase I. The aspartokinase activity remains essentially untouched and retains its threonine sensitivity. The inactivation of the dehydrogenase requires the covalent binding of one equivalent of the analogue per subunit. Alkylation does not affect the tetrameric state of the protein. The alkylating agent, a substrate analogue, meets the qualitative and quantitative requirements of an affinity label.  相似文献   

9.
C Chin  J C Warren 《Steroids》1973,22(3):373-378
Estriol 16-hemisuccinate has been synthesized and covalently attached to Sepharose through 1,5-diaminopentane. A crude preparation of estradiol-17β dehydrogenase from human placenta was adsorbed on the gel. After extensive washing, the enzyme was eluted by M hydroxylamine in 0.1 M potassium phosphate buffer (20–50% glycerol), pH 7, at room temperature. An apparently homogeneous enzyme with a specific activity of 7.2 U/mg (82% recovery) was obtained. It is stable for weeks in the eluting buffer. The hydroxylamine can be removed by passing the enzyme solution over a Sephadex G-100 column or by dialyzing it against 0.1 M potassium phosphate buffer containing 20% glycerol. This one-step process makes purification of the enzyme simple and easy.  相似文献   

10.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

11.
In addition to the normal 5-exo-hydroxylation of camphor, bacterial cytochrome P450 is shown to carry out the facile epoxidation of dehydrocamphor to give exo-5,6-epoxycamphor. A detailed kinetic study of the reaction demonstrates that epoxidation and hydroxylation reactions occur with nearly identical rates both in the reconstituted system containing flavoprotein dehydrogenase, iron-sulfur protein, and NADH as well as in the single turnover reaction beginning with ferrous, oxygenated cytochrome P450. Dehydrocamphor is not a suicide substrate for the enzyme since competent enzyme remains after several thousand reaction cycles per P450 molecule.  相似文献   

12.
The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed.  相似文献   

13.
Comprehensive studies were made with Lemna paucicostata Hegelm. 6746 of the effects of combinations of lysine, methionine, and threonine on growth rates, soluble amino acid contents, aspartokinase activities, and fluxes of 4-carbon moieties from aspartate through the aspartokinase step into the amino acids of the aspartate family. These studies show that flux in vitro through the aspartokinase step is insensitive to inhibition by lysine or threonine, and confirm previous in vitro data in establishing that aspartokinase in vivo is present in two orders of magnitude excess of its requirements. No evidence of channeling of the products of the lysine- and threonine-sensitive aspartokinases was obtained, either form of the enzyme alone being more than adequate for the combined in vivo flux through the aspartokinase step. The marked insensitivity of flux through the aspartokinase step to inhibition by lysine or threonine strongly suggests that inhibition of aspartokinase by these amino acids is not normally a major factor in regulation of entry of 4-carbon units into the aspartate family of amino acids. Direct measurement of fluxes of 4-carbon units demonstrated that: (a) Lysine strongly feedback regulates its own synthesis, probably at the step catalyzed by dihydrodipicolinate synthase. (b) Threonine alone does not regulate its own synthesis in vivo, thereby confirming previous studies of the metabolism of [14C]threonine and [14C]homoserine in Lemna. This finding excludes not only aspartokinases as an important regulatory determinant of threonine synthesis, but also two other enzymes (homoserine dehydrogenase and threonine synthase) suggested to fulfill this role. Complete inhibition of threonine synthesis was observed only in the combined presence of accumulated threonine and lysine. The physiological significance of this single example of apparent regulation of flux at the aspartokinase step, albeit under unusually stringent conditions of aspartokinase inhibition, remains to be determined. (c) Isoleucine strongly inhibits its own synthesis, probably at threonine dehydratase, without causing compensatory reduction in threonine synthesis. A fundamentally changed scheme for regulation of synthesis of the aspartate family of amino acids is presented that has important implications for improvement of the nutritional contents of these amino acids in plants.  相似文献   

14.
Transient regulation of enzyme synthesis in Escherichia coli   总被引:2,自引:0,他引:2  
Summary After lysine addition to an exponentially growing culture of Escherichia coli K12, the kinetics of repression of aspartokinase III synthesis show a transient regulatory phenomenon: during one generation, enzyme synthesis is practically equal to zero (Fig. 1). A similar phenomenon appears to be involved during repression of aspartokinase I-homoserine dehydrogenase I synthesis by threonine and isoleucine (Fig. 2). This sort of phenomenon has been previously reported in another system and interpreted as an indication of regulation at the translational level.  相似文献   

15.
Reaggregating cell cultures of neonatal mouse cerebellar cells express many of the differentiated properties of normal developing cerebellum, including the transition for the embryonic and adult isozymes of l-glycerol 3-phosphate dehydrogenase (EC 1.1.1.8). In order to determine the mechanism leading to increased levels of adult isozyme, aggregates in culture from 2 to 17 days were labeled with radioactive leucine and the relative rate of enzyme synthesis was measured after purification of the enzyme by affinity chromatography on Blue Sepharose 6B. During the course of in vitro differentiation, the relative rate of synthesis increased 100-fold, such that it represented 0.5% of the total protein synthesized in the cytoplasmic fraction of the cell. In vivo, BALBcBy mice have twice the level of enzyme activity in the cerebellum as do C57BL6J mice. Reaggregating cell cultures of cerebellar cells from these strains of mice also express a difference in the activity level, but only when the cerebellar cells are taken from mice 4 days of age or less. When the relative rates of synthesis of l-glycerol 3-phosphate dehydrogenase were measured in cultures expressing the strain-dependent difference in activity, these rates were found to be approximately twofold greater in cultures of BALBcBy cells. In contrast, estimates of the relative rate of enzyme degradation by the double-isotope labeling technique indicate that neither specific enzyme degradation nor degradation of total protein is different in aggregates from the two strains of mice. The results suggest that the genetic mechanisms controlling the levels of l-glycerol 3-phosphate dehydrogenase in the cerebellum during development are intrinsic to the cells and, with the exception of serum factors, are independent of systemic influences.  相似文献   

16.
The presence of a single aspartokinase was demonstrated in Rhodospirillum tenue. The enzyme has been purified about 60-fold. No physical association exists in this species between aspartokinase and homoserine dehydrogenase. The general properties of the enzyme are described. Inhibition by l-lysine, by l-threonine, and concerted inhibition by these two end products are regulatory characters which have also been found in many other species. In R. tenue, aspartokinase is also subject to a hitherto not encountered type of concerted feedback inhibition, by l-threonine plus l-methionine. The inhibition caused by lysine can be reversed either by glycine, l-isoleucine, l-methionine, or l-phenylalanine. The concerted inhibition by lysine plus threonine is reversed by glycine, l-isoleucine, or l-phenylalanine, but not by l-methionine, which exerts in conjunction with threonine the independent concerted inhibition referred to above. Addition of single or several metabolites to cultures of R. tenue caused inhibition of growth and reversal of growth inhibition, compatible with the effects observed in vitro on aspartokinase activity. The regulation of this enzyme in relation to that of other bacterial aspartokinases is discussed.  相似文献   

17.
We report here a comparison between immunochemical properties of the bifunctional enzyme aspartokinase II-homoserine dehydrogenase II of E.coli K12 and of its two isolated proteolytic fragments. Both fragments, one inactive and one endowed with homoserine dehydrogenase activity, react with antibodies raised against the native enzyme. Some of the antibodies elicited against the dehydrogenase fragment can recognize regions of this fragment which are not exposed in the entire enzyme.The immunochemical results are used to discuss a simple model in which this bifunctional enzyme is folded up in two domains. The organization of aspartokinase II-homoserine dehydrogenase II is compared to that of another bifunctional enzyme aspartokinase I-homoserine dehydrogenase I with which it shares some sequence homology.  相似文献   

18.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a Hipip-type iron-sulfur center (Center S-3) has been detected in the reconstitutively active soluble succinate dehydrogenases. Em7,4 determined in a particulate, antimycin A sensitive succinate-cytochrome c reductase is +60 ± 15 mV. This center is extremely labile towards oxygen in a manner similar to the reconstitutive activity of the dehydrogenase. Even freshly prepared reconstitutively active enzyme shows a considerably diminished content of Center S-3 relative to flavin and displays a partly modified spectra. All reconstitutively inactive dehydrogenases give rise to a highly modified or no Center S-3 spectra at all. These observations indicate that Center S-3 is a constituent of succinate dehydrogenase and plays a role in the physiological function of the enzyme, i.e. transferring electrons most probably to ubiquinone.  相似文献   

19.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

20.
The intracellular localization of NADP-dependent glutamate dehydrogenase has been studied in Saccharomyces cerevisiae.Beside cytoplasmic GDH, enzyme activity has been found to be associated with the nuclear fraction in amounts comparable to those reported in nuclei of higher organisms.The yield and distribution of both GDH activities have been analyzed in mutants showing, under particular growth conditions, defective mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号