首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute respiratory syncytial virus (RSV) infection causes airway inflammation and exacerbates asthma, but the mechanism of inflammation is poorly understood. The role of the STAT-signaling pathway in RSV infection in epithelial cells was examined in this study. DNA microarray analyses of RSV-infected human alveolar type II (A549) epithelial cells identified several genes whose expression was altered from -5.5 to +56.4-fold. Four of the highly expressed genes contained STAT-binding elements. In A549 and normal human bronchial epithelial cells (NHBE), RSV induced phosphorylation and nuclear translocation of STAT-1alpha that was abrogated when RSV attachment was blocked. Treatment with a JAK-2 inhibitor or transfection with dominant-negative STAT-1alpha blocked STAT-1alpha activation and RSV infection. RSV also activated STAT-3 and IL-6 specific antibodies blocked this activation. Thus, activation of the STAT-1alpha and STAT-3 pathways play a role in RSV infection.  相似文献   

2.
Airway epithelial cells are unresponsive to endotoxin (lipopolysaccharide (LPS)) exposure under normal conditions. This study demonstrates that respiratory syncytial virus (RSV) infection results in increased sensitivity to this environmental exposure. Infection with RSV results in increased expression of Toll-like receptor (TLR) 4 mRNA, protein, and increased TLR4 membrane localization. This permits significantly enhanced LPS binding to the epithelial monolayer that is blocked by disruption of the Golgi. The increased TLR4 results in an LPS-induced inflammatory response as demonstrated by increased mitogen-activated protein (MAP) kinase activity, IL-8 production, and tumor necrosis factor alpha production. RSV infection also allowed for tumor necrosis factor alpha production subsequent to TLR4 cross-linking with an immobilized antibody. These data suggest that RSV infection sensitizes airway epithelium to a subsequent environmental exposure (LPS) by altered expression and membrane localization of TLR4. The increased interaction between airway epithelial cells and LPS has the potential to profoundly alter airway inflammation.  相似文献   

3.
Respiratory syncytial (RS) virus infects the epithelium of the respiratory tract. We examined the replication and maturation of RS virus in two polarized epithelial cell lines, Vero C1008 and MDCK. Electron microscopy of RS virus-infected Vero C1008 cells revealed the presence of pleomorphic viral particles budding exclusively from the apical surface, often in clusters. The predominant type of particle was filamentous, 80 to 100 nm in diameter, and 4 to 8 microns in length, and evidence from filtration studies indicated that the filamentous particles were infectious. Cytopathology produced by RS virus infection of polarized Vero C1008 cells was minimal, and syncytia were not observed, consistent with the maintenance of tight junctions and the exclusively apical maturation of the virus. Infectivity assays with MDCK cells confirmed that in this cell line, RS virus was released into the apical medium but not into the basolateral medium. In addition, the majority of the RS virus transmembrane fusion glycoprotein on the cell surface was localized to the apical surface of the Vero C1008 cells. Taken together, these results demonstrate that RS virus matures at the apical surface of polarized epithelial cell lines.  相似文献   

4.
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.  相似文献   

5.
6.
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells, causing bronchiolitis, upper respiratory infections, asthma exacerbations, chronic obstructive pulmonary disease exacerbations, and pneumonia in immunocompromised hosts. A replication intermediate of RSV is dsRNA. This is an important ligand for both the innate immune receptor, TLR3, and protein kinase R (PKR). One known effect of RSV infection is the increased responsiveness of airway epithelial cells to subsequent bacterial ligands (i.e., LPS). In this study, we examined a possible role for RSV infection in increasing amounts and responsiveness of another TLR, TLR3. These studies demonstrate that RSV infection of A549 and human tracheobronchial epithelial cells increases the amounts of TLR3 and PKR in a time-dependent manner. This leads to increased NF-kappaB activity and production of the inflammatory cytokine IL-8 following a later exposure to dsRNA. Importantly, TLR3 was not detected on the cell surface at baseline but was detected on the cell surface after RSV infection. The data demonstrate that RSV, via an effect on TLR3 and PKR, sensitizes airway epithelial cells to subsequent dsRNA exposure. These findings are consistent with the hypothesis that RSV infection sensitizes the airway epithelium to subsequent viral and bacterial exposures by up-regulating TLRs and increasing their membrane localization.  相似文献   

7.
Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between beta1 or alpha5beta1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary.  相似文献   

8.
Infection by influenza virus leads to respiratory failure characterized by acute lung injury associated with alveolar edema, necrotizing bronchiolitis, and excessive bleeding. Severe reactions to infection that lead to hospitalizations and/or death are frequently attributed to an exuberant host response, with excessive inflammation and damage to the epithelial cells that mediate respiratory gas exchange. The respiratory mucosa serves as a physical and chemical barrier to infection, producing mucus and surfactants, anti-viral mediators, and inflammatory cytokines. The airway epithelial cell layer also serves as the first and overwhelmingly primary target for virus infection and growth. This review details immune events during influenza infection from the viewpoint of the epithelial cells, secretory host defense mechanisms, cell death, and recovery.  相似文献   

9.
10.
目的:通过检测气道反应性和M2受体功能,研究呼吸道合胞病毒(RSV)感染与哮喘发病的关系及机制。方法:34只豚鼠随机分为4组:Hep-2滴鼻+生理盐水雾化(Hep-2/NS,A)组,RSV滴鼻+生理盐水雾化(RSV/NS,B)组,Hep-2滴鼻+鸡卵蛋白(OVA)雾化(Hep-2/OVA,C)组和RSV滴鼻+OVA雾化(RSV/OVA,D)组,其中A和B纽各9只,C和D组各8只,以A组为对照组。21d通过电刺激迷走神经检测各组气道反应性和M2受体功能,行嗜酸性粒细胞计数以及病理学观察。结果:B组气道内压力(mmH2O)与A组无明显差异(P〉0.05),给予匹罗卡品,IP下降幅度高于A组,但差别无显著性(P〉0.05)。C组IP明显高于A且(P〈0.05),且给予匹罗卡品,IP下降幅度明显低于A组,差别有显著性(P〈0.05)。D组IP明显高于C组(P〈0.05),给予匹罗卡品后IP下降幅度明显低于C组(P〈0.05)。结论:RSV感染可促进过敏原引起的M2R功能障碍,从而促进AHR发生。  相似文献   

11.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

12.
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.  相似文献   

13.
This article reviews aspects of respiratory syncytial virus (RSV) infection in airway epithelial cells (AECs), including cytopathogenesis, entry, replication and the induction of immune response to the virus, including a new role for thymic stromal lymphopoietin in RSV immunopathology.  相似文献   

14.
During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.  相似文献   

15.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

16.
We have investigated the process of release of simian virus 40 (SV40) virions from several monkey kidney cell lines. High levels of virus release were observed prior to any significantly cytopathic effects in all cell lines examined, indicating that SV40 utilizes a mechanism for escape from the host cell which does not involve cell lysis. We demonstrate that SV40 release was polarized in two epithelial cell types (Vero C1008 and primary African green monkey kidney cells) grown on permeable supports; release of virus occurs almost exclusively at apical surfaces. In contrast, equivalent amounts of SV40 virions were recovered from apical and basal culture fluids of nonpolarized CV-1 cells. SV40 virions were observed in large numbers on apical surfaces of epithelial cells and in cytoplasmic smooth membrane vesicles. The sodium ionophore monensin, an inhibitor of vesicular transport, was found to inhibit SV40 release without altering viral protein synthesis or infectious virus production.  相似文献   

17.
Respiratory syncytial virus (RSV) is worldwide the most frequent cause of bronchiolitis and pneumonia in infants requiring hospitalization. In the present study, we supply evidence that human lung microvascular endothelial cells, human pulmonary lung aorta endothelial cells, and HUVEC are target cells for productive RSV infection. All three RSV-infected endothelial cell types showed an enhanced cell surface expression of ICAM-1 (CD54), which increased in a time- and RSV-dose-dependent manner. By using noninfectious RSV particles we verified that replication of RSV is a prerequisite for the increase of ICAM-1 cell surface expression. The up-regulated ICAM-1 expression pattern correlated with an increased cellular ICAM-1 mRNA amount. In contrast to ICAM-1, a de novo expression of VCAM-1 (CD106) was only observed on RSV-infected HUVEC. Neither P-selectin (CD62P) nor E-selectin (CD62E) was up-regulated by RSV on human endothelial cells. Additional experiments performed with neutralizing Abs specific for IL-1alpha, IL-1beta, IL-6, and TNF-alpha, respectively, excluded an autocrine mechanism responsible for the observed ICAM-1 up-regulation. The virus-induced ICAM-1 up-regulation was dependent on protein kinase C and A, PI3K, and p38 MAPK activity. Adhesion experiments using polymorphonuclear neutrophil granulocytes (PMN) verified an increased ICAM-1-dependent adhesion rate of PMN cocultured with RSV-infected endothelial cells. Furthermore, the increased adhesiveness resulted in an enhanced transmigration rate of PMN. Our in vitro data suggest that human lung endothelial cells are target cells for RSV infection and that ICAM-1 up-regulated on RSV-infected endothelial cells might contribute to the enhanced accumulation of PMN into the bronchoalveolar space.  相似文献   

18.
Coronavirus infection of polarized epithelial cells   总被引:2,自引:0,他引:2  
Epithelial cells are the first host cells to be infected by incoming coronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for the directional sorting of coronaviruses might be similar to those governing the polar release of secretory proteins.  相似文献   

19.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   

20.
Production of platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3- phosphocholine (PAF), a potent mediator of inflammation, by mononuclear phagocytes varies with their stage of cellular differentiation and the nature of the eliciting stimulus. The human monocytic cell line U937 can be induced to differentiate to a macrophage-like cell following phorbol myristate acetate exposure, and after differentiation, these cells efficiently support replication of respiratory syncytial virus (RSV). U937 cells induced to differentiate with phorbol myristate acetate demonstrated a time-dependent decrease in PAF synthesis. RSV infection of these differentiated U937 cells caused a sustained stimulation of PAF synthesis that paralleled viral replication and was dependent on infectious virus. Virus increased the activity of lyso-PAF:acetyl-CoA acetyl-transferase (PAF acetyltransferase) in cell lysates, thus enhancing the anabolic pathway of PAF synthesis without altering the activity of PAF acetylhydrolase, which regulates PAF catabolism. RSV infection of human monocytes also caused a marked increase in [3H] monocytes also caused to uninfected monocytes. Thus, virus infection serves as a novel stimulus to induce PAF synthesis in human mononuclear phagocytes and suggests that increased PAF production may have a critical role in the inflammatory response to RSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号