首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To learn how species differences in stomatal behavior are regulated, the response of epidermal and leaf diffusive resistance to light was investigated in Lycopersicon esculentum Mill., Solanum pennellii Corr., and a periclinal chimera having an S. pennellii epidermis and an L. esculentum mesophyll that was produced from a graft of the two species. S. pennellii has about 23% fewer stomata per square millimeter than does L. esculentum, and the two species have contrasting stomatal sensitivities to light. The abaxial stomata of L. esculentum open in dimmer light and to a greater extent than the adaxial stomata. The abaxial and adaxial stomata of S. pennellii respond similarly to light incident on the adaxial epidermis and are less open at all quantum flux densities than comparable stomata of L. esculentum. The patterns of response to light of the abaxial and adaxial stomata of the chimera were practically identical to those of L. esculentum, and quite unlike those of S. pennellii. Thus, the pattern of stomatal light response in the chimera was regulated by the L. esculentum mesophyll. The reduction in stomatal frequency of the chimera, which was regulated by the epidermis of S. pennellii, contributed to the 40% difference in leaf diffusive resistance between the plants in moderate light.  相似文献   

2.
Anomocytic stomata and stomata with single subsidiary cells are commonly observed Sometimes a stoma appears anisocytic. Double cytoplasmic connections between nearby stomata and division of guard cells with persistent or degenerating nuclei are seen in GA. One or more divisions of guard cells, displaced guard cells and single guard cells with or without pore are noticed in SUC. Formation of single guard cells is a common feature in TIBA. Paracytic stomata, one and a half stomata and persistent stomatal initials are seen in SUL. COUM seems to be not inhibitory inCucumis sativus. In COL stomata with unequal guard cells, unequal stomatal cells with thickening in between but without intervening pore, stoma with double pores, persistent stomatal initials which may be solitary or in groups with varying shapes and with one or two nuclei of different shapes are noticed. The growth regulators affect the frequency of stomata, epidermal cells; stomatal index; size of guard and epidermal cells.  相似文献   

3.
荐圣淇  赵传燕  赵阳  彭守璋  彭焕华 《生态学报》2011,31(17):4818-4825
拟利用遥感图像处理技术--面向对象分类,计算胡杨叶片气孔密度,采用面向对象分类的专业软件eCognition对气孔图像进行多尺度分割,将生成的分类图像导入ArcGIS中计算气孔密度,最后用R语言编写代码进行批处理。研究结果显示:该方法用于计算叶片气孔的密度精度高;18个样点胡杨气孔密度存在着较大的差异,从76.7 个/mm2到139.4 个/mm2不等,其平均密度为105 个/mm2;随着干旱胁迫加强,气孔密度表现下降上升再下降的趋势。  相似文献   

4.
Minimal diffusive resistances of both leaf epidermes increased during normal and retarded ageing (moving secondary leaves aside, plant decapitation). The retarded ageing of primary leaves slowed down increase in epidermal resistance (rep), and was also reflected in the prolongation of their growth, increase of leaf area, size of epidermal and guard cells and stomatal pores. Decrease of stomata density was to some extent balanced by an increase in the pore size; the later rapid rise in diffusion resistance was induced by the loss of stomata ability to open fully.  相似文献   

5.
Kanemasu ET  Tanner CB 《Plant physiology》1969,44(11):1547-1552
Concurrent measurements of abaxial and adaxial stomatal resistance and leaf-water potentials of snap beans (Phaseolus vulgaris L.) in the field and growth chamber show that the stomata on the 2 surfaces of the leaflet react differently to water deficit. The stomata on the abaxial surface, which are about 7 times more numerous than on the adaxial surface, are not significantly affected at leaf-water potentials greater than —11 bars, but with further decrease in leaf-water potential, the resistance rapidly increases. On the other hand, the resistance of the adaxial stomata increases sharply at a leaf-water potential of about —8 bars and is constant at higher water potentials. The average stomatal resistance for both surfaces of the leaf, which is the major diffusive resistance to water vapor, to a first approximation acts as an on-off switch and helps prevent further decline in leaf-water potential. The relation between the leaf-water potential and the stomatal resistance links the soil-water potential to the transpiration stream as needed for soil-plant-atmosphere models.  相似文献   

6.
The effect of potassium deficiency on cuticular resistance and diurnal variation in stomatal diffusive resistance was studied in tea (Camellia sinensis). The plants were grown in sand and potassium deficiency induced by withholding the supply of potassium. The results showed that during the day potassium-deficient leaves had a higher stomatal diffusive resistance than control leaves. However when solar radiation was reduced by clouds the stomatal diffusive resistance in both control and potassium-deficient leaves was not significantly different. Night opening of stomata was observed in both control and potassium-deficient leaves, but noticeably lower in the latter. Potassium-deficient leaves had a lower cuticular resistance than control leaves.  相似文献   

7.
The Diffusive Conductivity of the Stomata of Wheat Leaves   总被引:2,自引:0,他引:2  
A leaf chamber (described in detail) was used alternately witha resistance porometer to measure resistance to viscous flowof air through the leaf, and with a diffusion porometer to measurethe differential diffusive flow of hydrogen and air (VHVA)through the leaf and the component of hydrogen flow (V'H) movingstraight across the leaf. The resistance of the mesophyll isneeded for interpretation: estimates by three different methodsfor viscous flow did not agree very well, but two differentmethods for diffusive flow gave good agreement. For wheat leaves,only very large errors are important. Formal analysis is in three appendixes: I. Interpretation ofviscous and diffusive flow in small pores involves some problemsin molecular physics, complicated by the particular geometryof the wheat stoma. With some uncertainty, formal expressionsare derived for the viscous resistance of a single stoma, rv,and for the resistances to diffusion of hydrogen and air, andof water vapour and carbon dioxide, all expressed as rs persquare centimetre of leaf surface. The analysis for hydrogen/airis the most uncertain; that for water vapour and carbon dioxideis more reliable. II. An indication is given of the flow characteristicsof the leaf-chamber system, from which rv can be derived, andof the basis for estimating mesophyll resistance. III. The methodof converting estimates of rs into estimates of VHVAand V'H is given. The results presented are expressed as nearly as possible interms of the quantities which were measured. For five leavesthe dependence of VHVA on V'H agrees well with theoreticalpredictions; the dependence of VHVA (and V'H) on rv,on average, agrees well with prediction, but involves the assumptionthat the stomata get shorter as they close. The agreement isgood enough to suggest that the formal expressions for rs interms of stomatal dimensions and molecular gas constants arereliable enough to be carried forward into future transpirationand assimilation studies. The minimum value of ra for watervapour (c. 3 sec cm+1) is close to values found elsewhere bydifferent techniques. At very small stomatal openings there was a large deviationfrom predicted behaviour, such as would occur if the imposedexcess air pressure further closed the stomata during viscousflow experiments.  相似文献   

8.
The study of the structure-activity relationship of phenoliccompounds in reversing the ABA-effect on stomata led us to investigatethe changes in K+ concentrations in guard cells and in the epidermaldiffusive resistance of leaves, after treatment with ABA andphenolics. The amount of potassium localized in guard cells usually correspondsto stomatal aperture in different treatments. Umbelliferone,however, permits stomatal opening without retention of potassiumin the guard cells, which is an exception. The effect of phenolicsin retaining K+ in epidermal peels is matched by recorded epidermaldiffusive resistance changes in the leaves.Although flavonoidsand some other phenolics behave differently showing recoveryin epidermal peels with K+ in guard cells, epidermal diffusiveresistance is not recovered. Key words: Epidermal diffusive resistance, K+, ABA, phenolics, stomata  相似文献   

9.
The effect of leaf water deficit on net CO2 assimilation was studied under two conditions: in one, the stomata were allowed to contribute to the regulation of CO2 assimilation; in the other, air was forced through the leaf at a constant rate to overcome the effects of change in stomatal resistance accompanying changes in leaf water deficit. When the stomata were allowed to regulate the gaseous diffusive resistance of the leaf, CO2 assimilation decreased with increasing leaf water deficit. However, when air was forced through the leaf, the rate of assimilation was not inhibited by increasing leaf water deficit. The results indicate that the inhibition of net CO2 assimilation with increasing leaf water deficit is a consequence of an increase in the diffusive resistance to gas exchange and not of a change in apparent mesophyll resistance.  相似文献   

10.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water.  相似文献   

11.
Variable Cell Lineages form the Functional Pea Epidermis   总被引:4,自引:0,他引:4  
Evidence was sought for cellular programs and cellular interactionsacting during the formation of stomatal spacing patterns. Dailyreplicas of the surfaces of Pisum sativum leaves were used toreconstruct the cellular development of specific regions ofthe epidermis. During the period studied small primordia becamemature leaves; this involved a 250-fold increase in area anda 20-fold increase in cell number. The earliest event correlatedwith the development of a stoma was an unequal division, andsuch divisions were common in neighbouring and even within thesame cells. A distinct cell lineage started with these unequaldivisions, forming both a stoma and most of the cells that separatedit from its neighbours. Both products of an unequal divisionbecame regular epidermal cells only where such development preventedthe formation of two stomata that would have been in directcontact with one another. Neighbouring stomata often developedand matured together, indicating that there was no mutual inhibitionbetween developing stomata that were more than one cell apart.It is concluded that stomata are products of an intracellularprogram which generates stomatal patterns during rather thanpreceding development. This program can be modified and evenstopped during its entire course, allowing for the correctionof local ‘mistakes’ of stomatal patterning. Cell lineages, cell determination, cellular interactions, epidermal development, garden peas, immature stomata, pattern formation, Pisum sativum, spacing patterns, stomata, unequal divisions  相似文献   

12.

Key message

An automated process using a cascade classifier allowed the rapid assessment of the density and distribution of stomata on microphotographs from leaves of two oak species.

Abstract

Stomatal density is the number of stomata per unit area, an intensively studied trait, involved in the control of CO2 and H2O exchange between leaf and atmosphere. This trait is usually estimated by counting manually each stoma on a given surface (e.g., a microphotograph), usually repeating the procedure with images from different parts of the leaf. To improve this procedure, we tested the performance of a cascade classifier to automatically detect stomata on microphotographs from two oak species: Quercus afares Pomel and Quercus suber L. The two species are phylogenetically close with similar stomatal morphology, which allowed testing the reuse of the cascade classifier on stomata with similar shape. The results showed that a cascade classifier trained on only 100 sample views of stomata from Q. afares was able to rapidly detect stomata in Q. afares as well as in Q. suber with a very low number of false positives (5 %/1.9 %) and a small number of undetected stomata (14.8 %/0.74 %), when partial stomata near the edge of the microphotographs were ignored. The remaining undetected stomata were due to obstacles such as trichomes. As an example of further applications, we used the positions detected by the cascade classifier to assess the spatial distribution of stomata and group them on the leaf surface. To our knowledge this is the first time that a cascade classifier has been applied to plant microphotographs, and we were able to show that it can dramatically decrease the time needed to estimate stomatal density and spatial distribution.  相似文献   

13.
14.
Mutual diffusional interference between adjacent stomata of a leaf   总被引:1,自引:1,他引:0       下载免费PDF全文
Cook GD  Viskanta R 《Plant physiology》1968,43(7):1017-1022
The mutual diffusional interference between adjacent stomata in laminar flow over a leaf is shown to play a decisive role in determining overall transpiration. The magnitude of this interference varies with the interaction of the vapor diffusional shells forming above each stoma and the air flow over the leaf. The interference decreases with increasing incident radiation and wind velocity. The effect of interference on the stomatal resistance to diffusion plays a major role in the overall variations in transpiration.  相似文献   

15.
Midday depression of net photosynthesis and transpiration in the Mediterranean sclerophylls Arbutus unedo L. and Quercus suber L. occurs with a depression of mesophyll photosynthetic activity as indicated by calculated carboxylation efficiency (CE) and constant diurnal calculated leaf intercellular partial pressure of CO2 (Ci). This work examines the hypothesis that this midday depression can be explained by the distribution of patches of either wide-open or closed stomata on the leaf surface, independent of a coupling mechanism between stomata and mesophyll that results in a midday depression of photosynthetic activity of the mesophyll. Pressure infiltration of four liquids differing in their surface tension was used as a method to show the occurrence of stomatal patchiness and to determine the status of stomatal aperture within the patches. Liquids were selected such that the threshold leaf conductance necessary for infiltration through the stomatal pores covered the expected diurnal range of calculated leaf conductance (g) for these species. Infiltration experiments were carried out with leaves of potted plants under simulated Mediterranean summer conditions in a growth chamber. For all four liquids, leaves of both species were found to be fully infiltratable in the morning and in the late afternoon while during the periods leading up to and away from midday the leaves showed a pronounced patchy distribution of infiltratable and non-infiltratable areas. Similar linear relationships between the amount of liquid infiltrated and g (measured by porometry prior to detachment and infiltration) for all liquids clearly revealed the existence of pneumatically isolated patches containing only wide-open or closed stomata. The good correspondence between the midday depression of CE, calculated under the assumption of no stomatal patchiness, and the diurnal changes in non-infiltratable leaf area strongly indicates that the apparent reduction in mesophyll activity results from assuming no stomatal patchiness. It is suggested that simultaneous responses of stomata and mesophyll activity reported for other species may also be attributed to the occurrence of stomatal patchiness. In Quercus coccifera L., where the lack of constant diurnal calculated Ci and major depression of measured CE at noontime indicates different stomatal behavior, non-linear and dissimilar relationships between g and the infiltratable quantities of the four liquids were found. This indicates a wide distribution of stomatal aperture on the leaf surface rather than only wide-open or closed stomata.Dedicated to Professor Otto L. Lange on the occasion of his 65th birthday  相似文献   

16.
The structure and ontogeny of foliar stomata were studied in 50 species of 28 genera belonging to 17 tribes of the family Euphorbiaceae. The epidermal cells are either polygonal, trapezoidal, or variously elongated in different directions and diffusely arranged. The epidermal anticlinal walls are either straight, arched or sinuous. The architecture of cuticular striations varies with species. The mature stomata are paracytic (most common), anisocytic, anomocytic and diacytic. Occasionally a stoma may be tetracytic, cyclocytic or with a single subsidiary cell. The ontogeny of paracytic stomata is mesogenous dolabrate or trilabrate, mesoperigenous dolabrate; that of diacytic stomata is mesogenous dolabrate, whereas that of anisocytic stomata is mesogenous trilabrate; rarely an anisocytic stoma may be mesoperigenous. Hemiparacytic stomata are mesoperigenous unilabrate; tetracytic stomata are mesoperigenous dolabrate and anomocytic stomata perigenous. Abnormalities encountered include four types of contiguous stomata, stomata with a single or both guard cells aborted and persistent stomatal initials. Cytoplasmic connections between the guard cells of two adjacent stomata or the guard cell of a stoma and an adjacent epidermal/subsidiary cell, or both types occurring in a species, were noticed. The stomatal development, distribution, diversity and basic stomatal type with reference to systematics are discussed.  相似文献   

17.
When stomata of Vicia faba opened (from a stomatal aperture of about 2 micrometers to one of 12 micrometers) the solute content of the guard cells increased by 4.8 × 10−12 osmoles per stoma. During the same time an average of 4.0 × 10−12 gram equivalents of K+ were transported into each pair of guard cells. This amount of K+, if associated with dibasic anions, is sufficient to produce the changes in guard cell volume and osmotic pressure associated with stomatal opening. Analysis of Cl, P, and S showed that these elements were not transported in significant amounts during stomatal opening. This finding suggests that the anions balancing K+ were predominantly organic. K+ was specifically required because no other elements, likely to be present as cations, were found to accumulate in appreciable quantities in guard cells of open stomata.  相似文献   

18.
Many plant pathogens gain entry to their host via stomata. On sensing attack, plants close these pores to restrict pathogen entry. Here, we show that plants exhibit a second longer term stomatal response to pathogens. Following infection, the subsequent development of leaves is altered via a systemic signal. This reduces the density of stomata formed, thus providing fewer entry points for pathogens on new leaves. Arabidopsis thaliana leaves produced after infection by a bacterial pathogen that infects through the stomata (Pseudomonas syringae) developed larger epidermal pavement cells and stomata and consequently had up to 20% reductions in stomatal density. The bacterial peptide flg22 or the phytohormone salicylic acid induced similar systemic reductions in stomatal density suggesting that they might mediate this effect. In addition, flagellin receptors, salicylic acid accumulation, and the lipid transfer protein AZI1 were all required for this developmental response. Furthermore, manipulation of stomatal density affected the level of bacterial colonization, and plants with reduced stomatal density showed slower disease progression. We propose that following infection, development of new leaves is altered by a signalling pathway with some commonalities to systemic acquired resistance. This acts to reduce the potential for future infection by providing fewer stomatal openings.  相似文献   

19.
R. Lösch 《Oecologia》1979,39(2):229-238
Summary Stomatal apertures of isolated and suitably conditioned epidermal strips of Polypodium vulgare are described as the stomata respond to the influences of temperature, air humidity, and water potential at the epidermal inner walls. Water stress as a result of reduced water potential in the substomatal airspace leads to narrower stomatal pores when water potential falls below -8 bar. Water potentials above this threshold value show minor influence. Stomatal responses to such water stress strongly interact with the responses to humidity changes in ambient air and to temperature. The linear dependence of stomatal apertures on the vapor saturation deficit of the air (closing) is shifted to lower values (more closed) by lower leaf bulk water potentials.Stomatal behavior depending on the temperature factor seems to be reversed by higher water stress. Without water stress, rising temperatures between 20 and 28° C are accompanied by further opening of the pores, whereas an increase of temperature within this range leads to narrowing of the stomata under the influence of lower water potentials within the substomatal airspace. It can be demonstrated that stomatal aperture values of Polypodium vulgare depending on temperature always describe optimum curves. With no water stress, closing does not occur before rather high temperatures are reached and above a broad range of maximal opening. Water stress, on the other hand, results in more pronounced narrowing of stomatal pores and shifts the onset to considerably lower temperatures.  相似文献   

20.
Summary Potato plantlets (Solanum tuberosum L. cv. Benimaru) were cultured under photoautotrophic (without any sucrose in the nutrient medium and with enriched CO2 and high photosynthetic photon flux) and photomixotrophic conditions (20 g 1−1 sucrose in the medium). Leaf anatomy and stomatal characteristics of the leaves were studied in relation to stomatal size and density. Leaf diffusive resistance, transpiration rate, and wax content of the leaves were also investigated. In the photoautotrophic treatment, stomata behaved normally by closing in the dark and opening in the light. The stomatal density increased twofold compared to that of the photomixotrophic treatment. Relatively thick leaves and an organized palisade layer were observed and the epicuticulal wax content was remarkably higher in this treatment, i.e., seven times greater than that of photomixotrophic treatment. In general, higher diffusive resistance of the leaves was observed than under photomixotrophic conditions; also the resistance increased in darkness and decreased in the light. All these characteristics led the plantlets to have a normal and controlled transpiration rate, which was exceptionally high in the photomixotrophic treatment throughout the light and the dark period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号