首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The host range of retroviruses is rather complex and specific. It is controlled by the products of viral structural genes that interact with the determinants both on the surface and within the cell. The possibility to infect and transform duck embryo fibroblasts is shown for the Prague strain of chicken Rous sarcoma virus (subgroup C), though virus production in these cells is restricted. However, after the 6th passage the "adapted" virus gave the titre practically the same as it was for chicken embryo fibroblasts. Provirus of RSV adapted to the duck embryo fibroblasts and integrated into host DNA was isolated from the library of nucleotide sequences of duck embryo fibroblasts transformed by this virus. The nucleotide sequence of such provirus was determined. The alterations in gp85 coding region of the env gene which proved to be the result of recombination with endogeneous RAV-0 sequences were shown. The formation of viral particles with rather high titre was induced by the proviral transfection on both chicken and duck embryo fibroblasts. The contribution of the revealed alterations in the genome of transformation active virus and possible participation of its td mutant in the adaptation to the new host are discussed.  相似文献   

2.
A 96,000-dalton glycoprotein, p(96), was present in cell extracts obtained from gs-chf- chicken embryo fibroblasts infected with the avian RNA tumor viruses Rous-associated virus-2 subgroup B (RAV-2) and the Schmidt-Ruppin strain of Rous sarcoma virus subgroup A (SR-RSV-A), as well as from uninfected gsLchf+ (HE) cell extracts. It was not found in cell extracts from uninfected gs-chf- or gs+chf+ (HH) cells, nor from gs-chf- cells infected with envelope-deficient Bryan high-titer Rous sarcoma virus. Immunoprecipitation, kinetic, and biochemical data indicate the this polyprotein contains information that gives rise to the major virion glycoprotein gp85. A second polyprotein of 80,000 daltons, p/80), is also present in the RAV-2- and SR-RSV-A-infected gs-chf- cells. This second polyprotein contains less carbohydrate than p(96), and kinetic and biochemical data indicate that p(80) may be an immature form of p(96).  相似文献   

3.
4.
3H-labeled 35S RNA from avian myeloblastosis virus (AMV), Rous associated virus (RAV)-0, RAV-60, RAV-61, RAV-2, or B-77(w) was hybridized with an excess of cellular DNA from different avian species, i.e., normal or leukemic chickens, normal pheasants, turkeys, Japanese quails, or ducks. Approximately two to three copies of endogenous viral DNA were estimated to be present per diploid of normal chicken cell genome. In leukemic chicken myeloblasts induced by AMV, the number of viral sequences appeared to have doubled. The hybrids formed between viral RNA and DNA from leukemic chicken cells melted with a Tm 1 to 6 C higher than that of hybrids formed between viral RNA and normal chicken cell DNA. All of the viral RNAs tested, except RAV-61, hybridized the most with DNA from AMV-infected chicken cells, followed by DNA from normal chicken cells, and then pheasant DNA. RAV-61 RNA hybridized maximally (39%) with pheasant DNA, followed by DNA from leukemic (34%), and then normal (29%) chicken cells. All viral RNAs tested hybridized little with Japanese quail DNA (2 to 5%), turkey DNA (2 to 4%), or duck DNA (1%). DNA from normal chicken cells contained only 60 to 70% of the RAV-60 genetic information, and normal pheasant cells lacked some RAV-61 DNA sequences. RAV-60 and RAV-61 genomes were more homologous to the RAV-0 genome than to the genome of RAV-2, AMV, or B-77(s). RAV-60 and RAV-61 appear to be recombinants between endogenous and exogenous viruses.  相似文献   

5.
The number of viral genome equivalents per haploid cell genome was determined in normal chicken embryos from three selected chicken lines and in cultured fibroblasts (CEF) from these embryos. The cellular concentration of endogenous proviral DNA is similar in embryos from chickens of lines SPAFAS, 7, 15, 7 x 15, and 100. The concentration of proviral DNA is not affected by in vitro cultivation in CEF from lines that do not spontaneously produce virus, nor in CEF from line 7, which lacks receptors for Rous-associated virus type 0 (RAV-0). There is, however, a restricted increase in the number of integrated proviral genome equivalents in CEF from line 7 x 15, which produces RAV-0 and can support replication of this virus, and in CEF from line 15 experimentally infected with RAV-0.  相似文献   

6.
The effect DNA repair might have on the integration of exogenous proviral DNA into host cell DNA was investigated by comparing the efficiency of proviral DNA integration in normal chicken embryonic fibroblasts and in chicken embryonic fibroblasts treated with UV or 4-nitroquinoline-1-oxide. The cells were treated with UV or 4-nitroquinoline-1-oxide at various time intervals ranging from 6 h before to 24 h after infection with Schmidt-Ruppin strain A of Rous sarcoma virus. The chicken embryonic fibroblasts were subsequently cultured for 18 to 21 days to ensure maximal integration and elimination of nonintegrated exogenous proviral DNA before DNA was extracted. Integration of proviral DNA into the cellular genome was quantitated by hybridization of denatured cellular DNA on filters with an excess of (3)H-labeled 35S viral RNA. The copy number of the integrated proviruses in normal cells and in infected cells was also determined from the kinetics of liquid RNA-DNA hybridization in DNA excess. Both RNA excess and DNA excess methods of hybridization indicate that two to three copies of the endogenous provirus appear to be present per haploid normal chicken cell genome and that two to three copies of the provirus of Schmidt-Ruppin strain A of Rous sarcoma virus become integrated per haploid cell genome after infection. The copy number of viral genome equivalents integrated per cell treated with UV or 4-nitroquinoline-1-oxide at different time intervals before or after infection did not differ from the copy number in untreated but infected cells. This finding supports our previous report that the integration of oncornavirus proviral DNA is restricted to specific sites in the host cell DNA and suggests a specific mechanism for integration.  相似文献   

7.
8.
A provirus DNA that contains a gag-erbB fused gene as the sole and transforming gene was molecularly constructed from plasmid pSRA2 containing the entire genome of Rous sarcoma virus and pAE7.7 containing the entire genome of an avian erythroblastosis virus (AEV), AEV-H. A virus containing the gag-erbB fused gene (GEV) was recovered from chicken embryo fibroblasts transfected with the proviral DNA and a helper virus DNA. GEV could transform chicken embryo fibroblasts as efficiently as could AEV-H. Anti-erbB and anti-gag sera immunoprecipitated a protein with a molecular weight of about 110,000 from GEV-transformed cells. The erbB and gag-erbB fused-gene products in AEV-H- and GEV-transformed cells were analyzed.  相似文献   

9.
Phosphoamino acid compositions were determined for 10 size classes of cellular proteins, separated by electrophoresis through one-dimensional sodium dodecyl sulfate-polyacrylamide gels. Phosphotyrosine-containing proteins were observed in uninfected chicken embryo fibroblasts in every size class analyzed, ranging from approximately 20,000 to greater than 200,000 daltons. Transformation of chicken embryo fibroblasts by Rous sarcoma virus or PRC II avian sarcoma virus led to increases in phosphorylation of proteins at tyrosine residues in all of these size classes. A large fraction of the phosphotyrosine-containing protein molecules observed in Rous sarcoma virus-transformed cells was larger than 100,000 daltons with a second broad peak in the 35,000- to 60,000-dalton range. This study suggests that there are a number of substrates of viral or cellular tyrosine-specific protein kinases, which have not yet been identified by other methods.  相似文献   

10.
To see if integration of the provirus resulting from RNA tumor virus infection is limited to specific sites in the cell DNA, the variation in the number of copies of virus-specific DNA produced and integrated in chicken embryo fibroblasts after RAV-2 infection with different multiplicities has been determined at short times, long times, and several transfers after infection. The number of copies of viral DNA in cells was determined by initial hybridization kinetics of single-stranded viral complementary DNA with a moderate excess of cell DNA. The approach took into account the different sizes of cell DNA and complementary DNA in the hybridization mixture. It was found that uninfected chicken embryo fibroblasts have approximately seven copies, part haploid genome of DNA sequences homologous to part of the Rous-association virus 2 (RAV-2) genome. Infection with RAV-2 adds additional copies, and different sequences, of RAV -2- specific DNA. By 13 h postinfection, there are 3 to 10 additional copies per haploid genome. This number can not be increased by increasing the multiplicity of infection, and stays relatively constant up to 20 h postinfection, when some of the additional viral DNA is integrated. Between 20 and 40 h postinfection, the cells accumulated up to 100 copies per haploid genome of viral DNA. Most of these are unintegrated. This number decreases with cell transfer, until cells are left with one to three copies of additional viral DNA sequences per haploid genome, of which most are integrated. The finding that viral infection causes the permanent addition of one to three copies of integrated viral DNA, despite the cells being confronted with up to 100 copies per haploid genome after infection, is consistent with a hypothesis that chicken cells contain a limited number of specific integration sites for the oncornavirus genome.  相似文献   

11.
Rous sarcoma virus, an avian retrovirus, transforms but does not replicate in mammalian cells. To determine to what extent differences in RNA splicing might contribute to this lack of productive infection, cloned proviral DNA derived from the Prague A strain of Rous sarcoma virus was transfected into mouse NIH 3T3 cells, and the viral RNA was compared by RNase protection with viral RNA from transfected chicken embryo fibroblasts by using a tandem antisense riboprobe spanning the three major splice sites. The levels of viral RNA in NIH 3T3 cells compared with those in chicken embryo fibroblasts were lower, but the RNA was spliced at increased efficiency. The difference in the ratio of unspliced to spliced RNA levels was not due to the increased lability of unspliced RNA in NIH 3T3 cells. Although chicken embryo fibroblasts contained equal levels of src and env mRNAs, spliced viral mRNAs in NIH 3T3 cells were almost exclusively src. In NIH 3T3 cells the env mRNA was further processed by using a cryptic 5' splice site located within the env coding sequences and the normal src 3' splice site to form a double-spliced mRNA. This mRNA was identical to the src mRNA, except that a 159-nucleotide sequence from the 5' end of the env gene was inserted at the src splice junction. Smaller amounts of single-spliced RNA were also present in which only the region between the cryptic 5' and src 3' splice sites was spliced out. The aberrant processing of the viral env mRNA in NIH 3T3 cells may in part explain the nonpermissiveness of these cells to productive Rous sarcoma virus infection.  相似文献   

12.
RNA sequence relatedness among avian RNA tumor virus genomes was analyzed by inhibition of DNA-RNA hybrid formation between 3H-labeled 35S viral RNA and an excess of leukemic or normal chicken cell DNA with increasing concentrations of unlabeled 35S viral RNA. The avian viruses tested were Rous associated virus (RAV)-3, avian myeloblastosis virus (AMV), RAV-60, RAV-61, and B-77 sarcoma virus. Hybridization of 3H-labeled 35S AMV RNA with DNA from normal chicken cells was inhibited by unlabeled 35S RAV-0 RNA as effeciently (100%) as by unlabeled AMV RNA. Hybridization between 3H-labeled 35S AMV RNA and DNA from leukemic chicken myeloblasts induced by AMV was suppressed 100 and 68% by unlabeled 35S RNA from AMV and RAV-0, respectively. Hybridization between 3H-labeled RAV-0 and leukemic chicken myeloblast DNA was inhibited 100 and 67% by unlabeled 35S RNA from RAV-0 and AMV, respectively. It appears therefore that the AMV and RAV-0 genomes are 67 to 70% homologous and that AMV hybridizes to RAV-0 like sequences in normal chicken DNA. Hybridization between AMV RNA and leukemic chicken DNA was inhibited 40% by RNA from RAV-60 or RAV-61 and 50% by B-77 RNA. Hybridization between RAV-0 RNA and leukemic chicken DNA was inhibited 80% by RAV-60 or RAV-61 and 70% by B-77 RNA. Hybridization between 3H-labeled 35S RNA from RAV-60 or RAV-61 and leukemic chicken myeloblast DNA was reduced equally by RNA from RAV-60, RAV-61, AMV or RAV-0; this suggests that RNA from RAV-60 and RAV-61 hybridizes with virus-specific sequences in leukemic DNA which are shared by AMV, RAV-0, RAV-60, and RAV-61 RNA'S. Hybridization between 3H-labeled 35S RNA from RAV-61 and normal pheasant DNA was inhibited 100% by homologous viral RNA, 22 TO 26% BY RNA from AMV or RAV-0, and 30 to 33% by RNA from RAV-60 or B-77. Nearly complete inhibition of hybricization between RAV-0 RNA and leukemic chicken DNA by a mixture of AMV and B-77 35S RNAs indicates that the RNA sequences shared by B-77 virus and RAV-0. It appears that different avian RNA tumor virus genomes have from 50 to 80% homology in nucleotide sequences and that the degree of hybridization between normal chicken cell DNA and a given viral RNA can be predicted from the homology that exists between the viral RNA tested and RAV-0 RNA.  相似文献   

13.
J Korpela  M Kulomaa  P Tuohimaa    A Vaheri 《The EMBO journal》1983,2(10):1715-1719
Synthesis and secretion of avidin was studied in cultured chicken embryo fibroblasts infected with transforming retroviruses (Rous sarcoma virus, its mutants temperature-sensitive for transformation, OK-10 virus) or a nontransforming retrovirus (RAV-1). Avidin was detectable in both transformed and untransformed cultures, and was identical to chicken egg white avidin by several criteria: biotin-binding, heat-induced biotin exchange, subunit size (mol. wt. 15 600), immunoprecipitation of metabolically labeled proteins and immunoblotting. Transformation increased the production of avidin up to 50-fold, but several experiments suggested that the induction was not a direct consequence of virus-induced cell transformation. The production of avidin seemed to relate to cellular damage both in cultures of virus-transformed and of normal fibroblasts. It may represent a response to cellular damage and viral transformation may activate the process.  相似文献   

14.
RNA sequence relatedness among avian RNA tumor virus genomes was analyzed by inhibition of DNA-RNA hybrid formation between 3H-labeled 35S viral RNA and an excess of leukemic or normal chicken cell DNA with increasing concentrations of unlabeled 35S viral RNA. The avian viruses tested were Rous associated virus (RAV)-0, avian myeloblastosis virus (AMV), RAV-60, RAV-61, and B-77 sarcoma virus. Hybridization of 3H-labeled 35S AMV RNA with DNA from normal chicken cells was inhibited by unlabeled 35S RAV-0 RNA as efficiently (100%) as by unlabeled AMV RNA. Hybridization between 3H-labeled 35S AMV RNA and DNA from leukemic chicken myeloblasts induced by AMV was suppressed 100 and 68% by unlabeled 35S RNA from AMV and RAV-0, respectively. Hybridization between 3H-labeled RAV-0 and leukemic chicken myeloblast DNA was inhibited 100 and 67% by unlabeled 35S RNA from RAV-0 and AMV, respectively. It appears therefore that the AMV and RAV-0 genomes are 67 to 70% homologous and that AMV hybridizes to RAV-0 like sequences in normal chicken DNA. Hybridization between AMV RNA and leukemic chicken DNA was inhibited 40% by RNA from RAV-60 or RAV-61 and 50% by B-77 RNA. Hybridization between RAV-0 RNA and leukemic chicken DNA was inhibited 80% by RAV-60 or RAV-61 and 70% by B-77 RNA. Hybridization between 3H-labeled 35S RNA from RAV-60 or RAV-61 and leukemic chicken myeloblast DNA was reduced equally by RNA from RAV-60, RAV-61, AMV or RAV-0; this suggests that RNA from RAV-60 and RAV-61 hybridizes with virus-specific sequences in leukemic DNA which are shared by AMV, RAV-0, RAV-60, and RAV-61 RNAs. Hybridization between 3H-labeled 35S RNA from RAV-61 and normal pheasant DNA was inhibited 100% by homologous viral RNA, 22 to 26% by RNA from AMV or RAV-0, and 30 to 33% by RNA from RAV-60 or B-77. Nearly complete inhibition of hybridization between RAV-0 RNA and leukemic chicken DNA by a mixture of AMV and B-77 35S RNAs indicates that the RNA sequences shared by B-77 virus and RAV-0 are different from the sequences shared by AMV and RAV-0. It appears that different avian RNA tumor virus genomes have from 50 to 80% homology in nucleotide sequences and that the degree of hybridization between normal chicken cell DNA and a given viral RNA can be predicted from the homology that exists between the viral RNA tested and RAV-0 RNA.  相似文献   

15.
Synthesis of Avian Oncornavirus DNA in Infected Chicken Cells   总被引:25,自引:15,他引:10       下载免费PDF全文
The intracellular synthesis and integration of viral DNA (vDNA) into the host cell genome was studied in cultured chicken embryo fibroblasts infected with avian sarcoma or leukemia viruses. The newly synthesized vDNA was detected by hybridization with 70S viral RNA. Extraction of infected cell DNA by the selective procedure of Hirt resulted in the enrichment of newly synthesized vDNA in the low molecular weight supernatant fraction while leaving the bulk of cellular DNA containing integrated vDNA in the high molecular weight pellet fraction. This approach led to detection of intracellular vDNA synthesis within 1 h after infection and to vDNA integration into cellular DNA within 24 h. There was a several-fold increase in the vDNA content of infected cells during the initial phase of virus infection. But only a part of this newly synthesized vDNA appeared to become covalently linked with high molecular weight cellular DNA. Most of the remaining unintegrated vDNA gradually disappeared. The sedimentation profiles of minimally sheared cellular DNA in alkaline sucrose velocity gradients suggest that vDNA is synthesized as free linear molecules of approximately 3 x 10(6) daltons which subsequently are covalently linked to host cell DNA.  相似文献   

16.
Chicken embryo cells normally contain, in addition to deoxyribonucleic acid (DNA)-dependent DNA (D-DNA) polymerases, a novel "R-DNA-polymerase" which specifically copies polyriboadenylic acid strands. This R-DNA polymerase cannot copy natural ribonucleic acid or polyribocytidylic acid strands to a significant extent. Infection of cells with the leukovirus RAV-2 leads to the intracellular formation of large amounts of the viral RNA-dependent DNA polymerase whose properties differ from the cell R-DNA polymerase. Chicken cells transformed by a Rous sarcoma virus mutant which produce noninfectious alpha-type Rous sarcoma virus (f), a leukovirus known to be deficient in the viral RNA-dependent DNA polymerase, do not contain detectable viral RNA-dependent DNA polymerase, whereas the cellular R-DNA polymerase is found in normal amounts. There seems to be no relationship between the cellular R-DNA polymerase and the RNA-dependent DNA polymerase of the avian leukoviruses.  相似文献   

17.
Structural protein markers in the avian oncoviruses.   总被引:4,自引:2,他引:2       下载免费PDF全文
The proteins of purified avian oncoviruses were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and isoelectric focusing. Certain members of the avian leukosis-sarcoma viruses (ALSV) had group-specific antigens with altered electrophoretic properties. (i) The p27 protein of Rous-associated virus 0 (RAV-0) had a lower electrophoretic mobility in SDS gels and a lower isoelectric point than the p27 of other ALSV. (ii) The p19 proteins of RAV-1, RAV-2, and the Bryan high-titer strain of Rous sarcoma virus had higher mobilities in SDS gels than did the corresponding protein of other viruses. This altered electrophoretic mobility was correlated with specific differences in the tryptic peptides of radioiodinated p19s. (iii) The p15 protein of RAV-7 had a lower mobility in SDS gels than did the p15 of other ALSV. These markers were used in a study of the structural proteins of subgroup E RAV-60 produced after infection of chicken embryo cells by exogenous ALSV. Although exogenous group-specific protein markers could often be identified in the subgroup E isolates, one RAV-60 had a p27 that comigrated with the p27 of RAV-0. The p19s of two other RAV-60 isolates had electrophoretic properties that were different than those of p19s from either RAV-0 or the exogenous viruses. These results support the hypothesis that RAV-60 is generated by recombination between endogenous and exogenous oncoviruses and indicate that at least the p27 encoded by RAV-0 is closely related to a protein specified by endogenous viral information in chicken cells.  相似文献   

18.
Multiplication of Rous sarcoma virus and morphological conversion of chicken embryo fibroblasts are mediated by a DNA provirus. The role of the provirus in induction of morphological conversion has been shown by experiments of light inactivation of bromodeoxyuridine (BUdR)-sensitized proviral DNA. In the experiments reported here, inactivation of focus formation by BUdR and light could be obtained in cells in which the ability to produce virus has become resistant to X irradiation. This property is considered here to reflect the integrated state of the provirus. These experiments indicate that the role of proviral DNA extends beyond induction of morphological conversion and that an intact provirus is required for the maintenance of the transformed state. These experiments also indicate that no irreversible process leading to morphological conversion is initiated by a nonintegrated or by an integrated provirus.  相似文献   

19.
Infectious Rous Sarcoma Virus and Reticuloendotheliosis Virus DNAs   总被引:41,自引:33,他引:8       下载免费PDF全文
An efficient and quantitative assay for infectious Rous sarcoma virus and reticuloendotheliosis virus DNAs is described. The specific infectivities of viral DNA corresponded to one infectious unit per 10(5) to 10(6) viral DNA molecules. Infection with viral DNA followed one-hit kinetics. The minimal size of infectious Rous sarcoma virus DNA was approximately 6 million daltons, whereas the minimal size of infectious reticuloendotheliosis virus DNA was larger, 10 to 20 million daltons.  相似文献   

20.
Conditioned media from Rous sarcoma virus transformed chicken embryo fibroblasts stimulate the uptake of 2-deoxyglucose in normal chicken fibroblasts. The factor responsible for this effect, which is also shed in very low amount by non-transformed fibroblasts, is destroyed by trypsin and not linked to the protease and plasminogen activator activities present in the media. Its apparent molecular weight, determined by gel filtration, is about 20.000 daltons. The factor released by transformed cells might be related to the monomeric form of a family of glucose binding and transport proteins recently reported by Lee and Lipmann ('78) to be detached by detergents from normal and transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号