首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of real-time PCR technology has significantly improved and simplified the quantification of nucleic acids, and this technology has become an invaluable tool for many scientists working in different disciplines. Particularly in the field of molecular diagnostics and genotyping, real-time PCR-based assays have gained favour in the recent past. Rapid real-time PCR diagnosis can result in appropriate control measures and eradication procedures in a faster and more accurate way than traditional methods based on pathogen isolation. Real-time quantitative PCR represents a highly sensitive and powerful technique for the gel-free detection of nucleic acids. In this review, the main chemistries used for the detection of PCR product during real-time PCR, as well as advantages and limitations of real-time PCR will be depicted. Furthermore, the existing literature as it applies to plant pathogens detection in the routine and research laboratory will be reviewed in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits.  相似文献   

2.
The development of new technology within biological sciences has resulted in a number of real-time PCR instruments that have become essential tools within molecular biology. This equipment has facilitated high throughput analysis of samples and optimal information gathering of completed PCR reactions for example estimating the copy number of a gene of interest that is inserted into particular genomes. Real-time PCR instruments frequently come with optional filter sets, e.g. the ALEXA filter set which has parameters in common with excitation and emission wavelengths of sodium methyl umbelliferone (NaMU) widely used in beta-glucuronidase reporter gene assays. Using these filter sets it has been possible to quantify and measure gus A activity of Ulmus procera SR4 in real-time removing the necessity for aliquots of reactions to be stopped by pipetting into carbonate buffer for each time point. The introduction of real-time GUS analysis leads to faster, more accurate and reproducible assays with reduced potential for pipetting errors, requires fewer manipulations and encourages high throughput analysis of inter-individual gene expression variation.  相似文献   

3.
Johnson VJ  Yucesoy B  Luster MI 《Cytokine》2004,27(6):135-141
Single nucleotide polymorphisms (SNPs), particularly those within regulatory regions of genes that code for cytokines often impact expression levels and can be disease modifiers. Investigating associations between cytokine genotype and disease outcome provides valuable insight into disease etiology and potential therapeutic intervention. Traditionally, genotyping for cytokine SNPs has been conducted using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), a low throughput technique not amenable for use in large-scale cytokine SNP association studies. Recently, Taqman real-time PCR chemistry has been adapted for use in allelic discrimination assays. The present study validated the accuracy and utility of real-time PCR technology for a number of commonly studied cytokine polymorphisms known to influence chronic inflammatory diseases. We show that this technique is amenable to high-throughput genotyping and overcomes many of the problematic features associated with PCR-RFLP including post-PCR manipulation, non-standardized assay conditions, manual allelic identification and false allelic identification due to incomplete enzyme digestion. The real-time PCR assays are highly accurate with an error rate in the present study of <1% and concordance rate with PCR-RFLP genotyping of 99.4%. The public databases of cytokine polymorphisms and validated genotyping assays highlighted in the present study will greatly benefit this important field of research.  相似文献   

4.
Twenty-five years of quantitative PCR for gene expression analysis   总被引:13,自引:0,他引:13  
  相似文献   

5.
Aims:  Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies.
Method:  A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples.
Conclusions:  The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not.
Significance and Impact of the Study:  The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.  相似文献   

6.
实时荧光定量PCR技术被广泛应用于实验研究、临床检测中。与普通的PCR相比,实时荧光定量PCR技术具有特异性强、灵敏度高、重复性好、定量准确、速度快、全封闭反应等优点。我们综述了实时荧光定量PCR技术的原理、定量方法,及其在传染性疾病检测研究中的应用。  相似文献   

7.
Several PCR assays have been developed for detecting Aspergillus fumigatus DNA in blood of patients with invasive aspergillosis. However, the best blood fraction to be assayed has not been defined and the multicopy genes used as the DNA targets for amplification not characterized. Firstly, we developed a real-time PCR assays based on the TaqMan technology targeted to a single copy gene. To compare serum, white cell pellet, and plasma for effectiveness as blood assay fractions, we spiked whole blood with A. fumigatus DNA and processed these fractions similarly. The difference between white cell pellet and serum was not significant. In contrast, the yield from plasma was 10 times lower than from serum. Then, we compared serum processed immediately or after 24 h at room temperature and observed a lower yield after 24 h. Secondly, a real-time PCR assay targeted to a mitochondrial gene was also developed. The copy number was estimated between 9 and 10 mitochondrial genes per single copy gene. Therefore, we recommend serum, stored and frozen as soon as possible, to be used for detecting circulating A. fumigatus DNA for diagnosis. Moreover, the mitochondrial multicopy gene was characterized in order to compare results from different patients.  相似文献   

8.
The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection.  相似文献   

9.
Frequent and broad application of anthelmintic drugs for treatment of intestinal parasite infection has led to drug resistance that often renders whole populations of livestock unresponsive to treatment. Therefore, it is important to detect mutations associated with drug resistance before it becomes clinically manifest. To monitor developing drug resistance against benzimidazoles (BZ), we developed real-time PCR assays and applied them to analyse the beta-tubulin isotype-1 gene of the hookworm Ancylostoma caninum, an important parasite of dogs. Previously, we developed PCR assays to monitor codon positions 167 and 200. Here, we describe an assay which is able to detect resistance alleles in codon 198. These real-time PCR assays were subsequently applied to screen hookworm specimens recovered from dogs in Georgia. No elevated levels of polymorphisms at the investigated loci were found, suggesting that selection for resistance in the tested samples did not occur.  相似文献   

10.
Detection and monitoring of virus infections by real-time PCR   总被引:1,自引:0,他引:1  
The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.  相似文献   

11.
应用TaqMan荧光定量PCR检测土拉弗朗西斯菌   总被引:2,自引:0,他引:2  
目的:利用Roche LightCycler实时定量PCR系统建立一种快速、灵敏、特异的检测土拉弗朗西斯菌的方法。方法:基于TaqMan荧光探针实时定量PCR技术,选择土拉弗朗西斯菌染色体上的特异序列[醇醛酮还原酶(AKR)和外膜蛋白FopA基因]作为检测靶序列,建立土拉弗朗西斯菌实时定量PCR检测方法;评价该检测方法的特异性和灵敏性;采用克隆菌株污染环境土壤来模拟实际样品,评价该检测方法在快速检测与现场检测等实际应用中的表现。结果:优化筛选基因组中的FT-AKR和FT-fopA片段作为检测靶序列,所建立的土拉弗朗西斯菌实时定量PCR检测方法检测克隆菌株质粒的灵敏度均为10个拷贝/每个反应体系;以其他非土拉弗朗西斯菌为模板未出现非特异扩增;模拟环境土壤样品检测灵敏度2个引物对分别为440和960CFU/g土壤;盲测实验结果显示对于灵敏度范围内的阳性样本均能正确识别,并能正确检测出不同浓度的阳性样本。以FT-fopA片段为靶序列的扩增效率不及基于FT-AKR引物对的扩增。结论:基于FT-AKR片段的引物对扩增效率高,检测土拉弗朗西斯菌具有特异、灵敏的特点,对临床诊断、环境污染监测、防治生物突发事件等具有重要意义。  相似文献   

12.
Sporadically, HAdVs from species HAdV-C are detected in acute respiratory disease outbreaks. To rapidly type these viruses, we designed real-time PCR assays that detect and discriminate between adenovirus types HAdV-C1, -C2, -C5, and -C6. Sixteen clinical isolates from the California Department of Public Health were used to validate the new assays. Type-specific TaqMan real-time PCR assays were designed and used independently to successfully identify 16 representative specimens. The lower limit of detection for our LightCycler singleplex real-time PCR assays were calculated to be 100, 100, 100, and 50 genomic copies per reaction for HAdV-C1, HAdV-C2, HAdV-C5 and HAdV-C6, respectively. The results for the singleplex J.B.A.I.D.S. assays were similar. Our assays did not cross-react with other adenoviruses outside of species HAdV-C, respiratory syncytial virus, influenza, or respiratory disease causing bacteria. These assays have the potential to be useful as diagnostic tools for species HAdV-C infection.  相似文献   

13.
目的:比较寡核苷酸芯片法、实时荧光PCR和测序法在对慢性乙肝患者病毒基因分型的比较和方法学评价。方法:对126例不同基因型的慢性乙肝患者的血清样本分别用寡核苷酸芯片法、实时荧光PCR法和测序法进行基因分型,并评价各种方法的临床表现、所需时间和检测成本。结果:寡核苷酸芯片法、实时荧光PCR分别能检测到1%和0.1%比例的基因型。在126例慢性乙肝患者的临床样本中,寡核苷酸芯片法、实时荧光PCR和测序法分别检测出41(33%)、41(33%)和45(36%)例为B型,76(60%)、76(60%)、81(64%)例为C型。寡核苷酸芯片法、实时荧光PCR均检出9例B、C混合基因型。在三种检测方法中实时荧光PCR是最快速和廉价的。结论:寡核苷酸芯片法、实时荧光PCR能检出B、C混合基因型,而测序法只能检测出样本的主导基因型。  相似文献   

14.
Norovirus, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus are all common causes of gastroenteritis. Conventional diagnoses of these causative agents are based on antigen detection and electron microscopy. To improve the diagnostic potential for viral gastroenteritis, internally controlled multiplex real-time polymerase chain reaction (PCR) methods have been recently developed. In this study, individual real-time PCRs were developed and optimized for specific detections of Norovirus genogroup I, Norovirus genogroup II, Rotavirus group A, the Hepatitis A virus, and Coxsackievirus group B1. Subsequently, individual PCRs were combined with multiplex PCR reactions. In general, multiplex real-time PCR assays showed comparable sensitivities and specificities with individual assays. A retrospective clinical evaluation showed increased pathogen detection in 29% of samples using conventional PCR methods. Prospective clinical evaluations were detected in 123 of the 227 (54%) total samples used in the multiplex real-time PCR analysis. The Norovirus genogroup II was found most frequently (23%), followed by Rotavirus (20%), the Hepatitis A virus (4.5%), Coxsackievirus (3.5%), and Norovirus genogroup I (2.6%). Internally controlled multiplex real-time PCR assays for the simultaneous detection of Rotavirus, Coxsackievirus group B, the Hepatitis A virus, and Norovirus genogroups I and II showed significant improvement in the diagnosis of viral gastroenteritis.  相似文献   

15.
Quantitative analysis of chromosome conformation capture assays (3C-qPCR)   总被引:1,自引:0,他引:1  
Chromosome conformation capture (3C) technology is a pioneering methodology that allows in vivo genomic organization to be explored at a scale encompassing a few tens to a few hundred kilobase-pairs. Understanding the folding of the genome at this scale is particularly important in mammals where dispersed regulatory elements, like enhancers or insulators, are involved in gene regulation. 3C technology involves formaldehyde fixation of cells, followed by a polymerase chain reaction (PCR)-based analysis of the frequency with which pairs of selected DNA fragments are crosslinked in the population of cells. Accurate measurements of crosslinking frequencies require the best quantification techniques. We recently adapted the real-time TaqMan PCR technology to the analysis of 3C assays, resulting in a method that more accurately determines crosslinking frequencies than current semiquantitative 3C strategies that rely on measuring the intensity of ethidium bromide-stained PCR products separated by gel electrophoresis. Here, we provide a detailed protocol for this method, which we have named 3C-qPCR. Once preliminary controls and optimizations have been performed, the whole procedure (3C assays and quantitative analyses) can be completed in 7-9 days.  相似文献   

16.
We developed molecular diagnostic assays for the detection of Streptococcus pyogenes (GAS) and Streptococcus dysgalactiae subsp. equisimilis (SDSE), two streptococcal pathogens known to cause both pharyngitis and more invasive forms of disease in humans. Two real-time PCR assays coupled with an internal control were designed to be performed in parallel. One assay utilizes a gene target specific to GAS, and the other utilizes a gene target common to the two species. Both assays showed 2–3 orders of magnitude improved analytical sensitivity when compared to a commercially available rapid antigen test. In addition, when compared to standard culture in an analysis of 96 throat swabs, the real-time PCR assays resulted in clinical sensitivity and specificity of 91.7 and 100%, respectively. As capital equipment costs for real-time PCR can be prohibitive in smaller laboratories, the real-time PCR assays were converted to a low-density microarray format designed to function with an inexpensive photopolymerization-based non-enzymatic signal amplification (NESA™) method. S. pyogenes was successfully detected on the low-density microarray in less than 4 h from sample extraction through detection.  相似文献   

17.
AIMS: To compare the two different diagnostic assays for the detection of Mycobacterium avium ssp. paratuberculosis, the aetiological agent of paratuberculosis. METHODS AND RESULTS: Faecal samples were derived from 310 cows, representing 13 commercial dairy herds in various locations in Switzerland with expected increased risk because of a past history of disease. Detection assays for M. avium ssp. paratuberculosis were culture (gold standard) and a newly designed real-time PCR. Real-time PCR identified 31 of 310 animals as positive within this risk population whereas culture identified 20 positive animals. The specificity of real-time PCR was confirmed by DNA sequencing of the PCR product. Depending on the test used, the paratuberculosis prevalence in our tested risk population ranged from 6.5 to 10%. CONCLUSIONS: Real-time PCR and culture data were in good agreement, and real-time PCR generates data in a short time in contrast to culture. SIGNIFICANCE AND IMPACT OF THE STUDY: We consider real-time PCR as a suitable alternative method to culture for the detection of M. avium ssp. paratuberculosis in a national surveillance programme.  相似文献   

18.
Two duplex real-time PCR assays were developed to diagnose three human parasites: Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. TaqMan duplex real-time PCR was evaluated in 263 blood samples of suspected malaria patients by comparing results against those obtained with microscopy and nested PCR. Compared with nested PCR, duplex real-time PCR assays showed 100% sensitivity and specificity. Duplex real-time PCR detected all mixtures of P. falciparum and P. vivax DNA, except at threshold detection limits for both parasites in which P. vivax was not amplified. Threshold detection limits of real-time PCR were 3.1, 0.3 and 0.8 parasites per microlitre of blood for P. falciparum, P. vivax and P. malariae, respectively. Duplex real-time PCR allows the detection of malarial cases, including mixed species infection, it simplifies analysis and reduces cost. Thus, this protocol may prove invaluable for use in the diagnosis of human infection, trial treatments and epidemiologic studies in which high-throughput analyses are often required.  相似文献   

19.
An enhanced polymerase chain reaction (PCR) assay to detect the coronavirus associated with severe acute respiratory syndrome (SARS-CoV) was developed in which a target gene pre-amplification step preceded TaqMan real-time fluorescent PCR. Clinical samples were collected from 120 patients diagnosed as suspected or probable SARS cases and analyzed by conventional PCR followed by agarose gel electrophoresis, conventional TaqMan real-time PCR, and our enhanced TaqMan real-time PCR assays. An amplicon of the size expected from SARS-CoV was obtained from 28/120 samples using the enhanced real-time PCR method. Conventional PCR and real-time PCR alone identified fewer SARS-CoV positive cases. Results were confirmed by viral culture in 3/28 cases. The limit of detection of the enhanced real-time PCR method was 10(2)-fold higher than the standard real-time PCR assay and 10(7)-fold higher than conventional PCR methods. The increased sensitivity of the assay may help control the spread of the disease during future SARS outbreaks.  相似文献   

20.

Background

Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents.

Methodology/Principal Findings

A model system was designed allowing for assessment of bias in a duplex real-time PCR research assay. We collected blood plasma samples from male donors in pools of 6 to 8 individuals. Circulatory plasma DNA was extracted and separated by agarose gel electrophoresis. Separated DNA was recovered from the gel in discrete size fractions and analyzed with different duplex real-time PCR Taqman assays detecting a Y chromosome-specific target and an autosomal target. The real-time PCR research assays used differed significantly in their ability to determine the correct copy number ratio of 0.5 between Y chromosome and autosome targets in DNA of male origin. Longer PCR targets did not amplify quantitatively in circulatory DNA, due to limited presence of full-length target sequence in the sample.

Conclusions

PCR targets of the same small size are preferred over longer targets when comparing fractional circulatory DNA concentrations by real-time PCR. As an example, a DYS14/18S duplex real-time PCR research assay is presented that correctly measures the fractional concentration of male DNA in a male/female mixture of circulatory, fragmented DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号