首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variation exists in the sensitivity of individual rodents and humans to different bitter tastants. An absence of uniform correlation in responsiveness to different bitter substances across individuals within a species suggests heterogeneity in the mechanisms underlying stimulus processing within this taste modality. Here, we examined taste responsiveness of individual rats to three bitter compounds (quinine hydrochloride, denatonium benzoate, and cycloheximide) in short-term lick tests to determine the magnitude of covariation among responses to these stimuli and infer commonalities in their receptor and neural mechanisms. Rats were tested with a given pair of bitter stimuli during three sessions comprising randomized trial blocks of six concentrations of each stimulus + deionized water. Psychophysical functions were generated for individual rats for respective stimulus pairs, and concentrations of each stimulus that produced equivalent lick suppression relative to water were correlated across animals. Behavioral taste responsiveness to quinine hydrochloride strongly covaried with responsiveness to denatonium benzoate (r = +0.82). Lick responsiveness to quinine was less robustly correlated with that to cycloheximide (r = +0.44), and denatonium and cycloheximide responses failed to correlate. These results imply substantial overlap in the bitter taste coding mechanisms for quinine and denatonium but some degree of independence in the mechanisms responsible for gustatory processing of cycloheximide. More generally, these data reinforce the notion that bitter taste processing is not a homogeneous event.  相似文献   

2.
3.
Trpm5 null mice respond to bitter, sweet, and umami compounds   总被引:8,自引:0,他引:8  
Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.  相似文献   

4.
The taste coding mechanism in the cortical taste area was investigated by analyzing the responses of 59 neurons in the cortical taste area of the anesthetized rat to a mixture of the four basic tastants in both absence and presence of bicuculline methiodide, a specific antagonist to the GABA(A) receptors. The mixture caused response suppression more frequently than response facilitation, both in the control state and during bicuculline application. Cluster analysis revealed that only a group of the neurons with the best response to both NaCl and HCl (group NH) showed the best response to the mixture in the control state, whereas during bicuculline application, in addition to group NH, two other groups of neurons responding to sucrose, or to HCl and quinine responded vigorously to the mixture. Multidimensional scaling located the mixture outside the space of the four basic tastants facing an NaCl-HCl line in both states. GABAergic inhibition caused the group NH to represent the taste of the mixture in the control state. Thus, the mixture probably tastes salty and sour to rats. No cortical neuron was found which specifically responded to the mixture.  相似文献   

5.
The chilling response of plants is complex and based on the interplay of two important metabolic processes--lipolytic degradation of membrane lipids and a set of oxidative reactions leading to lipid peroxidation and membrane damage evoked in chilling-sensitive (CS) plants subjected to low temperature and light. The effects of chilling of detached leaves and intact plants differ and are often neglected during experiments. In closely-related species, the activity of several constitutive enzymes (i.e. superoxide dismutase, ascorbate peroxidase and glutathione reductase) appears to be higher in chilling-tolerant (CT) than in CS species; while in several native, closely-related CS species, lipid acyl hydrolase (galactolipase) activity is higher than in CT species. Moreover, in chilling-insensitive (CI) plants, galactolipase activity is very low and is neither activated by detachment of leaves nor under stress conditions in growing plants. Dark and low-temperature treatments of detached leaves of CS species and post-chilling recovery of growing plants in the light activate galactolipase, which is responsible for the release of free fatty acids (FFA), the main substrates of peroxidation by lipoxygenase and free radicals. In several CS species, increased galactolipase activity is an important factor contributing to chilling susceptibility. Thus, it seems likely that enhancement of chilling tolerance may be achieved by genetically suppressing galactolipase in order to reduce both the degradation of chloroplast lipids and the level of released FFA, and thereby avoiding the deleterious action of their peroxidation products on plant tissues.  相似文献   

6.
Bovine whey from the cheese-making industry contains several bioactive factors that promote health and prevent disease. Although many efforts have been made over the years to show that immunoglobulins, lactoperoxidase, lactoferrin, lysosyme and small peptides present in whey have antimicrobial activities against several pathogenic microorganisms, such activities have not been investigated so far for the lipid fraction of whey. Here, we have used an in vitro assay-based fractionation procedure to show that free fatty acids derived from whey cream specifically inhibit the germination of Candida albicans, a morphologic change associated with pathogenicity. Further fractionation by HPLC demonstrated that this activity can be mainly attributed to lauric acid, myristoleic acid, linoleic acid and arachidonic acid.  相似文献   

7.
The purpose of this study was to modify the amount of 22:4 n-6, 22:5 n-6 and 20:5 n-3 in cardiac phospholipids and to evaluate the influence of these changes on the functioning of working rat hearts and mitochondrial energy metabolism under normoxic conditions and during postischemic reperfusion. The animals were fed one of these four diets: (i) 10% sunflower seed oil (SSO); (ii) 10% SSO + 1% cholesterol; (iii) 5% fish oil (FO, EPAX 3000TG, Pronova) + 5% SSO; (iv) 5% FO + 5% SSO + 1% cholesterol. Feeding n-3 PUFA decreased n-6 PUFA and increased n-3 PUFA in plasma lipids. In the phospholipids of cardiac mitochondria, this dietary modification also induced a decrease in the n-6/n-3 PUFA ratio. Cholesterol feeding induced marked hepatic steatosis (HS) characterized by the whitish appearance of the liver. It also brought about marked changes in the fatty acid composition of plasma and mitochondrial phospholipids. These changes, characterized by the impairment of 5- and 6-desaturases, were more obvious in the SSO-fed rats, probably because of the presence of the precursor of the n-6 family (linoleate) in the diet whereas the FO diet contained large amounts of eicosapentaenoic and docosahexaenoic acids. In the mitochondrial phospholipids of SSO-fed rats, the (22:4 n-6 + 22:5 n-6) to 18:2 n-6 ratio was decreased by HS, without modification of the proportion of 20:4 n-6. In the mitochondrial phospholipids of FO-fed rats, the amount of 20:5 n-3 tended to be higher (+56%). Cardiac functioning was modulated by the diets. Myocardial coronary flow was enhanced by HS in the SSO-fed rats, whereas it was decreased in the FO-fed animals. The rate constant k012 representing the activity of the adenylate kinase varied in the opposite direction, suggesting that decreased ADP concentrations could cause oxygen wasting through the opening of the permeability transition pore. The recovery of the pump function tended to be increased by n-3 PUFA feeding (+22%) and HS (+45%). However, the release of ascorbyl free radical during reperfusion was not significantly modified by the diets. Conversely, energy production was increased by ischemia/reperfusion in the SSO group, whereas it was not modified in the FO group. This supports greater ischemia/reperfusion-induced calcium accumulation in the SSO groups than in the FO groups. HS did not modify the mitochondrial energy metabolism during ischemia/reperfusion. Taken together, these data suggest that HS- and n-3 PUFA-induced decrease in 22:4 and 22:5 n-6 and increase in 20:5 n-3 favor the recovery of mechanical activity during post-ischemic reperfusion.  相似文献   

8.
9.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual''s oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual''s ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.  相似文献   

10.
Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB.  相似文献   

11.
J.A. Lloyd 《Phytochemistry》1975,14(2):483-485
Acetone-soluble extractives of “blue” and “green” strain Pinus muricata D. Don were found to consist of free and “combined” fatty acids, resin acids, and phenols. The composition of the extractives from the two strains was similar though “green” strain P. muricata contained more Δ8(9),15 isopimaric acid than “blue” strain. This difference may be used to identify these muricata strains if the age of the wood precludes a monoterpene examination.  相似文献   

12.
The effects of feeding n-6 and n-3 fatty acids to broiler hens on cardiac ventricle fatty acid composition, and prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) production of hatched chicks were investigated. Fertile eggs obtained from hens fed diets supplemented with 3.5% sunflower oil (Low n-3), 1.75% sunflower+1.75% fish oil (Medium n-3), or 3.5% fish oil (High n-3) were incubated. The hatched chicks were fed a diet containing 18:3 n-3, but devoid of longer chain n-6 and n-3 fatty acids for 42 days. Arachidonic acid content was lower in the cardiac ventricle of High n-3 and Medium n-3 compared to Low n-3 birds for up to 2 weeks (P<0.002). Long chain n-3 fatty acids were higher in the cardiac ventricle of chicks from hens fed High and Medium n-3 diets when compared to chicks from hens fed the Low n-3 diet. Differences in long chain n-3 fatty acids persisted up to four weeks of age (P<0.001). Peripheral blood mononuclear cells (PBMNC) of 7-day-old High n-3 broilers produced significantly lower PGE2 and TXA2 than PBMNC from Low n-3 and Medium n-3 birds. These results indicate that maternal dietary n-3 fatty acids increases cardiac ventricle n-3 fatty acids while reducing arachidonic acid and ex vivo PGE2 and TXA2 production during growth in broiler chickens.  相似文献   

13.
Sterols, fatty acids and free amino acids of Helvella crispa and H. monachella were investigated. They contained traces of ergosterol and a high amount of ergosta 5.22-dien-3β-ol. Linoleic acid and l-Dopa are the most abundant fatty acid and free amino acid, respectively. The aqueous extract of H. monachella inhibits prostaglandin release by rat peritoneal leucocyres in vitro.  相似文献   

14.
In this study, the effects of dietary vitamin E, selenium, and their combination on the levels of fatty acid composition of the brain and liver tissues were examined. In brain tissue, the amounts of most fatty acids increased in vitamin E, combination and selenium groups compared with control group values. While the proportions of myristic, pentadecanoic, palmitic, linoleic, and total saturated fatty acids were decreased in vitamin E, Se and combination groups, eicosapentaenoic, total unsaturated and MUFA were increased in the same groups. In addition, the proportions arachidonic, eicosapentaenoic, total unsaturated, ω6 and MUFA in the combination group were higher than in the control group. In liver tissue, the amounts of myristic, pentadecanoic, palmitic, eicosedienoic, eicosapentaenoic, docosahexaenoic, ω3 and PUFA were higher in the combination group than in the control group. Also the proportions of eicosapentaenoic, docosahexaenoic acids in supplemented groups were higher than those in the control group. We conclude that dietary vitamin E and selenium have an influence on the levels of fatty acids in the brain and liver. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Changing the dietary ratio of the essential fatty acids (EFA), 18:2n6 and 18:3n3, while keeping the amounts of other fatty acids in the diet constant can rapidly and specifically alter the proportions of n6 and n3 22-carbon fatty acids in the brain of the weanling rat. A dietary 18:2n6/18:3n3 ratio of 165 versus 1.8 caused higher n6 and lower n3 22-carbon fatty acid levels, without changing total 22-carbon fatty acid levels, in phosphatidylethanolamine and phosphatidylcholine from several neural membrane fractions. This was apparent after only 2 weeks and showed no sign of plateauing after 12 weeks. Other neural fatty acids were essentially unaffected. The three most abundant 22-carbon fatty acids responded somewhat differently to increments in the dietary 18:2n6/18:3n3 ratio (1.8, 9, 36, and 165). Levels of 22:4n6 increased by similar absolute amounts for each four-fold increase in dietary 18:2n6/18:3n3 ratio; in contrast, the largest absolute changes in 22:5n6 and 22:6n3 levels occurred as the 18:2n6/18:3n3 ratio increased from 36 to 165. This study shows that the 18:2n6/18:3n3 ratio of diets high in fat (40% of energy) and adequate in EFA, both typical of diets in developed countries, can substantially and relatively quickly affect the 22-carbon fatty acids in the brain, even after the rapid accumulation of these fatty acids during neural growth has ceased.  相似文献   

16.
In isolated rat hepatocytes flavaspidic acid, a competitor with free fatty acids for the fatty-acid-binding-protein, decreased the uptake of oleic acid and triglyceride synthesis but stimulated the formation of CO2 and ketone bodies from oleic acid. Flavaspidic acid had no effect on the utilization of octanoic acid. Stimulation of the microsomal fatty-acid-activating enzyme by the fatty-acid-binding protein was reversed by flavaspidic acid. In contrast, the binding protein inhibited the mitochondrial fatty-acid-activating enzyme. Flavaspidic acid not only prevented this inhibition but actually stimulated the enzyme activity. The results indicate that the cytosol fatty-acid-binding protein directs the metabolism of long chain fatty acids toward esterification as well as enhancing their cellular uptake.  相似文献   

17.
GPR41 is reportedly expressed in murine adipose tissue and mediates short chain fatty acid (SCFA)-stimulated leptin secretion by activating Gαi. Here, we agree with a contradictory report in finding no expression of GPR41 in murine adipose tissue. Nevertheless, in the presence of adenosine deaminase to minimise Gαi signalling via the adenosine A1 receptor, SCFA stimulated leptin secretion by adipocytes from wild-type but not GPR41 knockout mice. Expression of GPR43 was reduced in GPR41 knockout mice. Acetate but not butyrate stimulated leptin secretion in wild-type mesenteric adipocytes, consistent with mediation of the response by GPR43 rather than GPR41. Pertussis toxin prevented stimulation of leptin secretion by propionate in epididymal adipocytes, implicating Gαi signalling mediated by GPR43 in SCFA-stimulated leptin secretion.  相似文献   

18.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

19.
Abstract

The main objective of this study was to evaluate the influence of diets enriched in individual conjugated linoleic acid (CLA) isomers, their mixture, and/or selenized yeast (Se-yeast) on the concentration of CLA isomers, long-chain polyunsaturated fatty acids (PUFA) and Se in the heart, muscles and liver of rats. The investigation was performed on 73 female Wistar rats (8 weeks of age, 200 g initial BW). After one week sub-maintenance feeding, rats received diets supplemented with 1% individual CLA isomers or 1 or 2% of a CLA isomers mixture, without or with 1.2 mg Se/kg (as Se-yeast) for 29 days. Feeding diets with 2% CLA isomer mixture reduced feed intake and body weight gain of rats, while addition of trans10,cis12 CLA and Se-yeast resulted in the highest body weight gain. CLA supplementation generally elevated the concentration of CLA isomers in heart and muscles significantly, although cis9,trans11 CLA accumulated preferentially. Regardless of the presence of Se-yeast, the dietary enrichment with CLA isomers caused a reduction in the capacity of Δ9-desaturase. Addition of Se-yeast to diets with individual CLA isomers or a 1% mixture of CLA isomers elevated the accumulation of CLA isomers in the heart and muscles, whereas all treatments with supplemented CLA and Se-yeast increased the accumulation of Se in rats compared with animals fed the diet containing Se only. Furthermore, CLA isomer supplementation decreased the concentration of PUFA and total fatty acids in the heart and muscles compared with control rats. Moreover, addition of CLA isomers interfered in the conversion of linoleic and linolenic acids to higher metabolites due to competition of CLA isomers for the same enzymes (Δ6-, Δ5-, Δ4-desaturases and elongase).  相似文献   

20.
The interaction of dietary protein type and fat level on the body fat-reducing activity of conjugated linoleic acid (CLA) was studied in male rats fed diets containing casein (CAS) or soy protein (SOY) as a protein source with low fat (LF, 6.0% soybean oil) or high fat (HF, 13.0% soybean oil) combinations for 4 weeks. CLA was added at the 1.0% level to all diets. The weight of perirenal adipose tissue tended to be lower in the SOY groups than in the corresponding CAS groups, and the difference between the LF diets was significant. The weight of epididymal adipose tissue showed a similar but insignificant trend. The weight of brown adipose tissue was heaviest on the SOY-HF diet and lowest on two CAS diets, the SOY-LF diet being intermediate. The concentration of serum leptin was lowest on the SOY-LF diet and was significantly lower than that of the corresponding CAS group, but this difference disappeared when the dietary fat level increased. The serum cholesterol-lowering activity of SOY in relation to CAS was reproduced even when CLA was given. Thus the body fat-reducing activity of CLA was most marked when rats were fed the SOY-LF diet. Although the CAS-HF diet increased body fat deposition, the magnitude of the reduction by lowering dietary fat level was more marked than in the case of SOY. These results indicate a complicated interaction of dietary manipulations with the body fat-reducing effect of CLA, but the combination of CLA with the SOY-LF diet appears to be an appropriate approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号