首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Mutants from Escherichia coli Q13 were selected for resistance to leucomycin, tylosin or spiramycin. Most of the mutants so selected exhibited cross resistance to all the macrolide antibiotics tested including erythromycin. A few mutants however seem to be less resistant to erythromycin. One mutant, QSP008, was highly resistant to tylosin, leucomycin and spiramycin but relatively sensitive to erythromycin. Another mutant, QSP006, was highly resistant to spiramycin but less resistant to erythromycin, tylosin and leucomycin. This selective resistance of cells to specific antibiotics could be due to the extent of conformational alteration of their ribosomes, which may be demonstrated by the extent of 14C-erythromycin binding to these ribosomes. The ribosomes from QSP008 cells were found to contain an altered 50-8 protein of the 50s ribosomal subunit, while in the ribosomes from QSP006 no such protein change could be detected by the methods used.A preliminary data of part of this work has been published (Tanaka, Teraoka, Tamaki, Watanabe, Osawa, Otaka, and Takata, 1971).  相似文献   

2.
Summary Mutants of the yeast Saccharomyces cerevisiae have been isolated in this laboratory which show increased resistance to a number of structurally and functionally unrelated antibiotics such as mikamycin, chloramphenicol, oligomycin and tetracycline (Bunn et al., 3971). When a multiply resistant haploid strain was crossed to an antibiotic sensitive strain, the resultant diploid progeny were completely resistant to chloramphenicol and oligomycin. However, the progeny showed different responses to mikamycin depending upon the concentration of antibiotic, all showed resistance to 25 g/ml but only about half were resistant to high levels of mikamycin (>100 g/ml). Detailed genetic analyses has shown that resistance to high levels of mikamycin is the result of a phenotypic interaction between two mutations, one nuclear and the other mitochondrial. The nuclear mutation by itself confers resistance to a number of antibiotics including chloramphenicol, oligomycin and mikamycin at a level of 25 g/ml. The mitochondrial mutation increases cellular resistance to mikamycin from 3 g/ml to about 8 g/ml. When the two mutations occur together in a cell, resistance to mikamycin is increased to at least 800 g/ml, the limit of solubility. Thus, the phenotypie interaction between these two mutations is not additive but synergistic.When cells containing the cytoplasmic [mik1-r] mutation are treated with ethidium bromide to produce ° cells (no mtDNA), the [mik1-r] determinant is lost, indicating that this mutation is located in the mitochondrial DNA. Recombination analyses with other mitochondrial markers indicates a marker order of [oli1-r mik1-r ery1-r] with [mik1-r] showing tighter linkage to the [oli1-r] marker.  相似文献   

3.
N R Towers 《Life sciences》1974,14(10):2037-2043
The antibiotic sensitivity of protein synthesis by mitochondria isolated from chick brain, trout liver, potato tuber and corn root has been investigated. Like mitochondria isolated from rat liver, organelles from these sources show a much reduced antibiotic sensitivity spectrum when compared to mitochondria derived from yeast, being sensitive to chloramphenicol, carbomycin, spiramycin and mikamycin but resistant to erythromycin, lincomycin, paromomycin, neomycin C and viridiogrisein. In addition spectinomycin inhibited protein synthesis by both types of plant mitochondria but not those from chick brain, rat liver or yeast.  相似文献   

4.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

5.
Selection of mutants of a low pathogenic strain E of R. prowazekii is a trend in genetic investigation of this Rickettsia species and one of the approaches to stabilizing the strain avirulent properties with a purpose of using in vaccine prophylaxis of typhus. The mutants of R. prowazekii, strain E selected by the authors earlier were characterized with respect to their infective capacity for chick embryos (CE) and antibiotic sensitivity. It was found that the infective capacity for CE of the erythromycin resistant mutant induced by nitroso guanidine (EErrI) was by ID50 2-3 logarithms lower than that of the initial strain E. The infective capacity for CE of the rifampicin resistant mutant induced by nitroso guanidine (ERifrI) and the spontaneous erythromycin resistant mutant was similar to that of strain E. The ERifrI strain differed from the initial strain E by higher sensitivity to tetracycline and erythromycin and the EErrI strain differed from the initial strain E by higher sensitivity to tetracycline and rifampicin. It was shown that the biological properties of the nitroso guanidine-induced mutants resistant to rifampicin and erythromycin differed from those of the initial strain E and the properties of the spontaneous erythromycin resistant mutant were similar to those of the initial strain E.  相似文献   

6.
Erythromycin resistance in mouse L cells   总被引:3,自引:0,他引:3  
The sensitivity of mouse cell lines in culture to the macrolide antibiotic, erythromycin stearate, was investigated. Both resistant and sensitive lines were found. Experiments indicated that in sensitive cells erythromycin stearate inhibits mitochondrial protein synthesis. Mutants resistant to erythromycin stearate were selected from the line LM(TK-), and these are also less sensitive to other macrolide antibiotics such as carbomycin and spiramycin. Attempts to transfer the erythromycin resistance of either the mutants or naturally resistant lines by fusion of cytoplasts with sensitive cells were unsuccessful, and it is concluded that resistance to erythromycin stearate is controlled by nuclear genetic factors.  相似文献   

7.
Summary We have studied the in vitro properties of ribosomes from several mutants resistant to erythromycin. Mutations in three different genes may confer resistance to erythromycin. Two of them are structural genes for proteins L4 and L22 of the large subunit. The third mutation (in eryC gene) seems to affect mainly the small subunit. The mechanism of action of the antibiotic may involve both subunits.  相似文献   

8.
Summary Erythromycin inhibits the growth of wild type Paramecia and eventually kills the cells. 24 erythromycin resistant mutants (22 U.V. induced, 2 spontaneous) have been isolated. They fall into att least three phenotypic classes on the basis of their level of resistance and of thermosensitivity.Genetic analysis of three mutants shows that the resistance character is cytoplasmically inherited, as evidenced by its clonal inheritance, its transfer through cytoplasmic bridges and its non-segregation at meiosis.The results suggest that these mutants may be mitochondrial mutants analogous to those described in yeast.  相似文献   

9.
Summary Chloroplast gene mutations which confer antibiotic resistance on chloroplast ribosomes of the green alga Chlamydomonas reinhardtii have been tested for allelism and mapped by recombination analysis of progeny from biparental zygote clones. Thirty-one independently isolated streptomycin resistant mutants have chloroplast ribosomes which are resistant to this drug in an assay based on misreading of isoleucine in response to a poly U template, and comprise one nuclear and four chloroplast gene loci. Four mutants resistant to spectinomycin, and three mutants resistant to neamine and kanamycin, which have chloroplast ribosomes resistant to their respective antibiotics in poly U directed phenylalanine incorporation, appear to map in a single chloroplast gene locus. Representative alleles of this nr/spr locus, the four streptomycin resistance loci, and two chloroplast gene loci for erythromycin resistance, have been analyzed in a series of parallel crosses to establish the following map order for these seven genes in the chloroplast genome: er-u-la-er-u-37-nr-u-2-1/spr-u-1-H-4-sr-u-2-23-sr-u-2-60-sr-u-sm3-sr-u-sm2. These seven genes may constitute a ribosomal region within the chloroplast genome of Chlamydomonas comparable to the ribosomal gene clusters in bacteria.  相似文献   

10.
11.
Summary Commercial preparations of mikamycin have been shown to act as both inhibitors of mitochondrial protein synthesis and respiration. These preparations are shown to consist of two major streptogramin components (mikamycin A and mikamycin B) and a number of minor components. The major streptogramin components which inhibit mitochondrial protein synthesis in vitro are without effect in vivo due to whole cell impermeability to these compounds.A minor antimycin A-like component is the active compound in mikamycin preparations which inhibits growth of yeast cells on ethanol. The site of this inhibition is at the level of respiratory Complex III.The mitochondrial [mik 1-r] mutation confers resistance to this minor growth inhibitory component and cross resistance to antimycin A. For clarity the designation mik 1 has therefore been renamed ana1 to denote the mitochondrial determinant conferring resistance to antimycin A. Genetic and physical mapping studies localise the ana1 determinant in the region of mitochondrial DNA specifying cytochrome b. It is proposed that the ana1 locus is part of a gene specifying a membrane component of Complex III.  相似文献   

12.
Summary Previous studies with haploid erythromycin-resistant mutants mapping to the Mendelian locus ery-M1 in Chlamydomonas reinhardi have revealed the presence of an altered chloroplast ribosomal protein (LC6) (Mets and Bogorad, 1971, 1972; Davidson et al., 1974). Vegetative diploids of C. reinhardi heterozygous at the ery-M1 locus have now been constructed. Chloroplast ribosomes from such diploids contain 60–70% wild-type form of protein LC6 and 30–40% altered form of LC6. Growth assays show that these diploids are partially resistant to erythromycin. Whether the diploids are grown in the presence or absence of erythromycin, the same ratio of wild-type: altered form of LC6 in chloroplast ribosomes is observed. Therefore, resistant chloroplast ribosomes must be able to carry out protein synthesis even when many of the sensitive chloroplast ribosomes are blocked by erythromycin.The presence of both the altered and wild-type forms of LC6 in diploids heterozygous at the ery-M1 locus is further evidence that a nuclear gene codes directly for a chloroplast ribosomal protein.An abstract of this work appeared in Genetics 80, S40 (1975)  相似文献   

13.
Summary All of several hundred erythromycin resistant (eryR) single site mutants ofBacillus subtilis W168 are temperature sensitive for sporulation (spots). The mutants and wild type cells grow vegetatively at essentially the same rates at both permissive (30° C) and nonpermissive (47° C) temperatures. In addition, cellular protein synthesis, cell mass increases and cell viabilities are similar in mutant and wild type strains for several hours after the end of vegetative growth (47° C). In the mutants examined, the temperature sensitive periods begin when the sporulation process is approximately 40% completed, and end when the process is 90% complete. At nonpermissive temperatures, the mutants produce serine and metal proteases at 50% of the wild type rate, accumulate serine esterase at 16% of the wild type rate, and do not demonstrate a sporulation related increase in alkaline phosphatase activity.The eryR and spots phenotypes cotransform 100%, and cotransduce 100% using phage PBS1. Revertants selected for ability to sporulate normally at 47° C (spo+), simultaneously regain parental sensitivity to erythromycin. No second site revertants are found.Ribosomes from eryR spots strains bind erythromycin at less than 1% of the wild type rate. A single 50S protein (L17) from mutant ribosomes shows an altered electrophoretic mobility. Ribosomes from spo+ revertants bind erythromycin like parental ribosomes and their proteins are electrophoretically identical to wild type. These data indicate that the L17 protein of the 50S ribosomal subunit fromBacillus subtilis may participate specifically in the sporulation process.  相似文献   

14.
The optimum conditions for the induction of mutants resistant to antibiotics in Brevibacterium flavum ATCC 14067 were determined. UV irradiation at the energy fluence of 6.5 kJ/m2 and N-methyl-N'-nitro-N-nitrosoguanidine (1 mg/mL) at pH 6.0 were used for the induction of mutants. Mutant strains resistant to rifampicin, oleandomycin, streptomycin and erythromycin were prepared.  相似文献   

15.
Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial resistance would appear to be the minimal necessary condition for survival of all such mutants, and antibiotic-resistant chloroplast ribosomes would be necessary for survival only under photosynthetic conditions.  相似文献   

16.
A total of 79 Clostridium difficile strains from healthy young and elderly adults, elderly patients without gastrointestinal disease, elderly patients receiving antibiotics without gastrointestinal complications, and elderly patients with antibiotic-associated diarrhea or pseudomembranous colitis were tested for their susceptibilities to 24 antimicrobial agents. All of the 79 strains were inhibited by low concentrations of rifampicin, metronidazole, fusidic acid, vancomycin, ampicillin, and penicillin G. The strains were highly resistant to aminoglycosides, trimethoprim, sulfamethoxazole, nalidixic acid, and cycloserine and often resistant to neomycin, cefoxitin, and cefalexin. Wide variations in the susceptibility of C. difficile strains to erythromycin, clindamycin, lincomycin, chloramphenicol, and tetracycline were found. Strains resistant to erythromycin, clindamycin, and lincomycin were more frequently found among strains isolated from elderly adults than those isolated from young adults, with particularly high frequency among strains isolated from elderly patients receiving antibiotics. None of the 23 strains isolated from healthy young adults was resistant to chloramphenicol. All of the 14 strains resistant to erythromycin, clindamycin, lincomycin, and chloramphenicol were sensitive to tetracycline and all of the 15 strains resistant to erythromycin, clindamycin, lincomycin, and tetracycline were sensitive to chloramphenicol. Only one out of 19 tetracycline-resistant strains was highly toxigenic, whereas 42 (70%) of 60 sensitive strains were highly toxigenic.  相似文献   

17.
Summary Pairs of strains of opposite mating type were isolated from a strain of Saccharomyces cerevisiae. From these isogenic strains, mitochondrially inherited resistant mutants to antimycin A and erythromycin were isolated. By using the two resistance genes as mitochondrial markers, it was proposed that the distribution of the mitochondrial genomes from zygotes to tetrads seemed not to be random but the genomes from either a or parent would be selected with approximately equal frequencies after zygote formation and subsequently distributed uniparentally to meiotic products.  相似文献   

18.
Erythromycin resistant mutants of Bacillus subtilis   总被引:6,自引:0,他引:6  
Summary Erythromycin resistant (ery r) mutants were isolated from Bacillus subtilis ATCC 6633. The composition of ribosomal proteins were analyzed for thirteen such ery r-mutants with chromatography on a carboxymethyl cellulose (CMC) column. The 50s subunit from all of the ery r-mutants was found to contain the altered 50d protein. The ribosomes prepared from the ery r-mutants did not show in vitro alteration of the ability to combine with erythromycin.  相似文献   

19.
The analysis of the genetic organization of the determinant ERLI by means of obtaining and studying the antibiotic sensitive mutants from the strain resistant to erythromycin and lincomycin provided experiment data in favour of the fact that inducable resistance to erythromycin and lincomycin determined by the plasmid might be defined by the same or closely linked genes.  相似文献   

20.
Summary Ammonium represses erythromycin synthesis bySaccharopolyspora erythraea and insensitive mutants to this effect were isolated. Six mutants were selected and one of them produces 50% more antibiotic than the wild type in 100 mM NH4Cl as nitrogen source. Glutamine synthetase and alanine dehydrogenase levels in the mutants were determined and no differences with wild type strain were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号