首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the high-mobility-group non-histone proteins from hen oviduct.   总被引:1,自引:1,他引:0  
Nuclear high-mobility-group (HMG) proteins were isolated from hen oviduct. These were proteins HMG-1, -2, -3, -14 and -17, which are equivalent to the classification of calf thymus HMG proteins. Hen oviduct proteins HMG-1 and -2 were individually isolated by HCIO4.extraction and CM-Sephadex chromatographic separation. Their mol.wts. were determined as 28 000 and 27 000, respectively. The proteins have a high content of acidic and basic amino acids. The association of proteins HMG-1 and -2 with the genome of hen oviduct nuclei was probed by a limited digestion with nucleases. Hen oviduct nuclei were incubated with deoxyribonuclease I or micrococcal nuclease until 10% of the DNA was digested. The nuclear suspension was centrifuged and the contents of proteins HMG-1 and -2 in the supernatant and sediment fractions were analysed by polyacrylamide-gel electrophoresis. HMG proteins were found to be preferentially released by micrococcal-nuclease digestion rather than by deoxyribonuclease I.  相似文献   

2.
HMG (high mobility group) 1 is a chromosomal protein with two homologous DNA-binding domains, the HMG boxes A and B. HMG-1, like its individual HMG boxes, can recognize structural distortion of DNA, such as four-way DNA junctions (4WJs), that are very likely to have features common to their natural, yet unknown, cellular binding targets. HMG-1 can also bend/loop DNA and introduce negative supercoils in the presence of topoisomerase I in topologically closed DNAs. Results of our gel shift assays demonstrate that mutation of Arg(97) within the extended N-terminal strand of the B domain significantly (>50-fold) decreases affinity of the HMG box for 4WJs and alters the mode of binding without changing the structural specificity for 4WJs. Several basic amino acids of the extended N-terminal strand (Lys(96)/Arg(97)) and helix I (Arg(110)/Lys(114)) of the B domain participate in DNA binding and supercoiling. The putative intercalating hydrophobic Phe(103) of helix I is important for DNA supercoiling but dispensable for binding to supercoiled DNA and 4WJs. We conclude that the B domain of HMG-1 can tolerate substitutions of a number of amino acid residues without abolishing the structure-specific recognition of 4WJs, whereas mutations of most of these residues severely impair the topoisomerase I-mediated DNA supercoiling and change the sign of supercoiling from negative to positive.  相似文献   

3.
4.
High mobility group (HMG) proteins 1 and 2 from calf thymus have been digested under structuring conditions (0.35 M NaCl, pH 7.1) with two proteases of different specificities, trypsin and V8. The two proteases give a different but restricted pattern of peptides in a time course digestion study. However, when the interactions of the peptides with DNA are studied by blotting, a closely related peptide from HMG-1 and -2 does not show any apparent binding. This peptide, from the V8 protease digestion, has been isolated by DNA-cellulose chromatography and has the amino acid composition predicted for a fragment containing the two C-terminal domains of the protein, i.e., approximately residues 74-243 for HMG-1. The same peptide shows the only interaction detectable with labelled histone H1. A separate function for the different domains of HMG proteins 1 and 2 is proposed.  相似文献   

5.
High-mobility-group (HMG) proteins are a family of non-histone chromosomal proteins which bind to DNA. They have been implicated in multiple aspects of gene regulation and cellular differentiation. Sulfoglucuronyl carbohydrate binding protein, SBP-1, which is also localized in the neuronal nuclei, was shown to be required for neurite outgrowth and neuronal migration during development of the nervous system. In order to establish relationship between SBP-1 and HMG family proteins, two HMG proteins were isolated and purified from developing rat cerebellum by heparin-sepharose and sulfatide-octyl-sepharose affinity column chromatography and their biochemical and biological properties were compared with those of SBP-1. Characterization by high performance liquid chromatography--mass spectrometry (HPLC-MS), partial peptide sequencing and western blot analysis showed the isolated HMG proteins to be HMG-1 and HMG-2. Isoelectric focusing, HPLC-MS and peptide sequencing data also suggested that HMG-1 and SBP-1 were identical. Similar to SBP-1, both HMG proteins bound specifically to sulfated glycolipids, sulfoglucuronylglycolipids (SGGLs), sulfatide and seminolipid in HPTLC-immuno-overlay and solid-phase binding assays. The HMG proteins promoted neurite outgrowth in dissociated cerebellar cells, which was inhibited by SGGLs, anti-Leu7 hybridoma (HNK-1) and anti-SBP-1 peptide antibodies, similar to SBP-1. The proteins also promoted neurite outgrowth in explant cultures of cerebellum. The results showed that the cerebellar HMG-1 and -2 proteins have similar biochemical and biological properties and HMG-1 is most likely identical to SBP-1.  相似文献   

6.
Two lymphoid cell-specific proteins, RAG-1 and RAG-2, initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences (RSSs). Although the RAG proteins themselves bind and cleave DNA substrates containing either a 12-RSS or a 23-RSS, DNA-bending proteins HMG-1 and HMG-2 are known to promote these processes, particularly with 23-RSS substrates. Using in-gel cleavage assays and DNA footprinting techniques, I analyzed the catalytic activity and protein-DNA contacts in discrete 12-RSS and 23-RSS complexes containing the RAG proteins and either HMG-1 or HMG-2. I found that both the cleavage activity and the pattern of protein-DNA contacts in RAG-HMG complexes assembled on 12-RSS substrates closely resembled those obtained from analogous 12-RSS complexes lacking HMG protein. In contrast, 23-RSS complexes containing both RAG proteins and either HMG-1 or HMG-2 exhibited enhanced cleavage activity and displayed an altered distribution of cleavage products compared to 23-RSS complexes containing only RAG-1 and RAG-2. Moreover, HMG-dependent heptamer contacts in 23-RSS complexes were observed. The protein-DNA contacts in RAG-RSS-HMG complexes assembled on 12-RSS or 23-RSS substrates were strikingly similar at comparable positions, suggesting that the RAG proteins mediate HMG-dependent heptamer contacts in 23-RSS complexes. Results of ethylation interference experiments suggest that the HMG protein is positioned 5' of the nonamer in 23-RSS complexes, interacting largely with the side of the duplex opposite the one contacting the RAG proteins. Thus, HMG protein plays the dual role of bringing critical elements of the 23-RSS heptamer into the same phase as the 12-RSS to promote RAG binding and assisting in the catalysis of 23-RSS cleavage.  相似文献   

7.
8.
The expression of chromosomal proteins HMG-14 and HMG-17 during cellular differentiation was studied in cultured mouse myoblasts. During myogenesis the level of both HMG-14 and HMG-17 mRNA decreased to less than 20% of that found in myoblasts. The down-regulation of HMG-14/-17 mRNA occurred simultaneously with activation of muscle-specific actin mRNA and was not linked to DNA synthesis, indicating that it is a differentiation-, rather than a cell cycle-related event. Incorporation of radiolabeled lysine into HMG proteins was similar to that into the major histone fractions in that it was significant in myoblasts and undetectable in myotubes. The decrease in mRNA and protein synthesis did not affect the cellular levels of HMG protein. These results indicate that the regulation of HMG-14/-17 mRNA levels is different from that of the histones and is linked to differentiation rather than to DNA synthesis.  相似文献   

9.
The non-histone proteins HMG-1, HMG-2, HMG-3, HMB-8, HMG-14, and HMG-17 (Goodwin, G. H., SANDERS, C., and Johns, E. W. (1973) Eur. J. Biochem. 38, 14) were purified from calf thymus. The apparent molecular weights on polyacrylamide gels run in the presence of sodium dodecyl sulfate of the high mobility group (HMB) proteins were determined. Those for HBG-1 and HMG-2 agreed with the molecular weights determined by sedimentation; that for HMG-17 was anomalously high. Antibodies against HMG-1 were elicited in rabbits. The interaction between HMG-1 and anti-HBG-1 was measured by quantitative precipitation and by the microcomplement fixation technique. Quantitative microcomplement fixation assays revealed that the indices of dissimilarity between HMG-1 and HMG-2, HMG-3, HMG-8, HMG-14, and HMG-17 were 2.0, 1.0, 3.8, 10.0, and 6.1, respectively. These correspond to 6%, 0%, 12%, 20%, and 16% sequence difference between HMG-1 and the other five HMG proteins, although the immunological distance between HMG-1 and HMG-14 may be too large to allow a good correlation between the sequence and the immunological reaction. Antibodies to HMB-1 bind to chromatin purified from calf thymus. Therefore, we suggest that the in situ organization of HMG proteins in chromatin and chromosomes may be studied by serological techniques.  相似文献   

10.
11.
12.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

13.
Monoclonal antibodies were prepared against the high mobility group (HMG) proteins 1, 2a, and 2b from hen erythrocyte chromatin. One antibody that recognized multiple sites along HMG-1, -2a, and -2b reacted strongly with HMG proteins from all vertebrates tested. In contrast, five antibodies that detected unique epitopes on chicken HMG-1 and -2a recognized antigenic sites that exhibited restricted phylogenic distributions. The differential reactivity of these antibodies on vertebrate proteins was in agreement with traditional taxonomy in that the avian HMGs were most closely related to those from reptiles and less related to those from mammals, amphibians, bonyfish, and especially the jawless fish. Mononucleosomes generated by mild digestion of erythrocyte chromatin with micrococcal nuclease were highly enriched in HMG-2a. One antigenic determinant located within the N-terminal domain of HMG-2a was freely accessible to its antibody when the protein was bound to these mononucleosomes. In contrast, two antibodies that recognized determinants in the central region of HMG-2a exhibited little chromatin binding activity. The masking of the central domain by DNA binding was presumably not responsible for these results because all three determinants were available for antibody binding when HMG-2a was bound to DNA in vitro. Therefore, the central region of HMG-2a may be masked from antibody binding by protein-protein interactions in chromatin.  相似文献   

14.
H Schrter  G Maier  H Ponstingl    A Nordheim 《The EMBO journal》1985,4(13B):3867-3872
Chicken erythrocyte nuclei were incubated with DNA intercalating agents in order to isolate from chromatin specific DNA-binding proteins whose binding specificity may be determined by DNA secondary and/or tertiary structure. The intercalating agents ethidium bromide (EtBr) and propidium iodide induce the specific release of high mobility group proteins HMG 14 and HMG 17 under low ionic strength conditions. Chloroquine (CQ) intercalation also results in the selective liberation of HMG 14 and HMG 17, but, in addition, selectively releases other nuclear proteins (including histone H1A) in a pH- and ionic strength-dependent fashion. The use of this new 'elutive intercalation' technique for the isolation and purification of 'sequence-specific' and 'helix-specific' DNA-binding proteins is suggested.  相似文献   

15.
The high mobility group (HMG) chromosomal proteins may modulate the structure of distinct regions in chromatin, thereby affecting processes such as development and differentiation. Here we report that the levels of the HMG chromosomal proteins and their mRNAs change significantly during erythropoiesis. Erythroid cells from 5-day chicken embryos contain 2.5-10 times more HMG mRNAs than cells from 14-day embryos, whereas circulating cells from adult animals are devoid of HMG and most other mRNAs. Nuclear run-off experiments and Northern analysis of RNA from various developmental stages and from Percoll-fractionated cells indicate that the genes are transcribed in early cells of either the primitive or definitive erythroid lineage. The rate of synthesis of the various HMGs changes during erythropoiesis; in erythroid cells from 7-day embryos the ratio of HMG-14b or HMG-17 to HMG-14a is, respectively, 8 and 10 times lower than in 9-day erythroids. HMG-14a, the major chicken HMG-14 species, is synthesized mainly in primitive cells, while HMG-14b is preferentially synthesized in definitive cells. Thus, the change from primitive to definitive erythroid lineage during embryogenesis is accompanied by a change in the expression of HMG chromosomal proteins. Conceivably, these changes may affect the structure of certain regions in chromatin; however, it is not presently clear whether the switch in HMG protein gene expression is a consequence or a prerequisite for proper differentiation.  相似文献   

16.
The high mobility group (HMG) non-histone chromosomal proteins were first isolated from calf thymus' but were later found in numerous organs of many vertebrates.' The proteins can be extracted from calf thymus 1 with 0.35 M NaCl and they are quite soluble in 2% trichloroacetic acid. We have shown that members of the HMG-1 family (i.e., HMG-1, HMG-2, and HMG-E) exhibit a preferential affinity for single-stranded DNA at roughly physiological ionic trength. Members of this family have other intriguing properties (see references 6 and 7 for recent reviews), including the ability to assemble nucleosomes in vitroe8 The architecture of the proteins strongly suggests that they are designed to interact simultaneously with histones and with DNA through physically distinct domains6, 9.  相似文献   

17.
18.
The interaction of immunopurified high mobility group 2a protein (HMG-2a) with DNA was examined by the nitrocellulose filter binding assay. The relative binding activity of HMG-2a for synthetic polynucleotides was: (dI).(dC) greater than (dA-dT).(dA-dT) greater than (dA).(dT) much greater than (dG).(dC) greater than (dG-dC).(dG-dC). The protein also exhibited a marked preference for (A + T)-rich restriction fragments derived from rat and Drosophila satellites, yeast centromeres, phage lambda, and the ovalbumin gene and its 5' flanking sequences. These preferential DNA interactions occurred at ionic strengths and temperatures within the physiological range which argue for an in vivo role of DNA stability in dictating the genomic distribution of the large Mr HMG proteins.  相似文献   

19.
Recombinant human chromosomal proteins HMG-14 and HMG-17.   总被引:6,自引:1,他引:5       下载免费PDF全文
Vectors for expressing human chromosomal proteins HMG-14 and HMG-17 in bacterial cultures under the control of the temperature-inducible lambda PL promoter have been constructed. The open reading frames of the cDNAs have been amplified by the polymerase chain reaction (PCR), utilizing amplimers containing desired restriction sites, thereby facilitating precise location of the initiation codon downstream from a ribosomal binding site. Expression of the recombinant proteins does not significantly affect bacterial growth. The rate of synthesis of the recombinant proteins is maximal during the initial stages of induction and slows down appreciably with time. After an initial burst of protein synthesis, the level of the recombinant protein in the bacterial extracts remains constant at different times following induction. Methods for rapid extraction and purification of the recombinant proteins are described. The recombinant proteins are compared to the proteins isolated from eucaryotic cells by electrophoretic mobility, Western analysis and nucleosome core mobility-shift assays. The ability of the proteins to shift the mobility of the nucleosome cores, but not that of DNA, can be used as a functional assay for these HMG proteins. A source for large quantities of human chromosomal proteins HMG-14 and HMG-17 will facilitate studies on their structure, cellular function and mechanism of interaction with nucleosomes.  相似文献   

20.
Sequence of a cDNA encoding chicken high-mobility-group protein-2.   总被引:3,自引:0,他引:3  
D B Sparrow  J R Wells 《Gene》1992,114(2):289-290
There are several members of the high-mobility-group (HMG) of DNA-binding proteins, including HMG-1, HMG-2, HMG-14 and HMG-17 [Johns: The HMG Chromosomal Proteins. Academic Press, London, 1982]. We report here sequences encoding the chicken HMG-2 protein of 207 amino acids (aa). This assignment is made on the basis of available data which indicate 89% homology of the chicken aa sequence to porcine HMG-2. This compares with 78-81% homology to the HMG-1 proteins of rat, hamster, human, porcine, and bovine origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号