首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

2.
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.  相似文献   

3.
The ATPase of SV40 large T antigen (T antigen) which is essential for the replication of SV40 minichromosomes was recently shown to be functionally related to a newly discovered DNA helicase activity. The T antigen helicase unwinds DNA duplices of several kilobase pairs in a reaction depending on the presence of hydrolyzable ribo- or deoxyribonucleoside triphosphates. The in vitro rate of movement through duplex DNA was found to be about 100 base pairs/min at 37 degrees C. For DNA unwinding, T antigen requires a 3'-single strand extension of a partially double-stranded substrate and invades the double strand section processively, in a 3' to 5' direction. The minimum length of the single-stranded tail was determined to be less than 5 nucleotides. Unwinding studies in the presence of the Escherichia coli single strand-specific DNA-binding protein and competition experiments indicate that T antigen helicase binds preferentially at the single-stranded/double-stranded DNA junction. This DNA structure is therefore proposed to serve as an entry site for the T antigen helicase. Previously reported data suggest that T antigen is the replicative helicase of the SV40 minichromosome. The results presented here are consistent with these findings and imply that T antigen migrates actively and processively along the template for the leading strand.  相似文献   

4.
Polyoma virus large tumor antigen (PyV T antigen) has been purified to near homogeneity by immunoaffinity column chromatography. We have detected DNA helicase and ATPase (nucleoside-5'-triphosphatase) activities in the purified PyV T antigen fraction and characterized these activities. The ATPase activity was stimulated about 2-fold by poly(dT), which was the most effective stimulator among the synthetic polynucleotides tested. Natural nucleic acids, such as calf thymus native and heat-denatured DNA, and single-stranded circular fd DNA were also effective, but the degree of stimulation was less than 1.5-fold. The basal and poly(dT)-stimulated ATPase activities showed similar preference for nucleoside 5'-triphosphates, requirement for divalent cations, and pH optima. The preference for nucleoside 5'-triphosphates was ATP, dATP greater than CTP, UTP much greater than GTP. The only difference observed between the two activities was salt sensitivity. The basal ATPase activity was resistant to KC1 up to 300 mM. In contrast, poly-(dT)-stimulated activity was reduced to the level of basal activity at 300 mM KC1. DNA helicase activity required divalent cations and was dependent on hydrolysis of ATP. The activity showed similar preference for nucleoside 5'-triphosphates, requirement for divalent cations, and pH optimum as the two ATPase activities, and the salt sensitivity of DNA helicase activity was similar to that of poly(dT)-stimulated ATPase activity. The helicase activity was inhibited competitively by the addition of single-stranded or double-stranded DNA, and a relatively high inhibitory activity was observed with poly [d(A-T)]. The PyV T antigen helicase was found to migrate in the 3' to 5' direction along the DNA strand to which the protein bound.  相似文献   

5.
Simian virus 40 large T antigen is a phosphoprotein with two clusters of phosphorylation sites. Each cluster includes four serine residues and one threonine residue. In vitro treatment with intestinal alkaline phosphatase removes the phosphate groups from the serine but not from the threonine residues. Potato acid phosphatase additionally dephosphorylates the phosphothreonine (Thr-124) in the N-terminal cluster but does not attack the phosphothreonine in the C-terminal cluster (Thr-701). Two biochemical functions of untreated and partially dephosphorylated T antigen were assayed, namely, its specific DNA-binding property and its DNA helicase activity. After treatment with alkaline phosphatase, T antigen had a severalfold higher affinity for the specific binding sites in the viral genomic control region, in particular, for binding site II in the origin of replication. However, T antigen, when dephosphorylated by acid phosphatase, had DNA-binding properties similar to those of the untreated control. Neither alkaline nor acid dephosphorylation affected the DNA helicase activity of T antigen.  相似文献   

6.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

7.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

8.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

9.
Jiao J  Simmons DT 《Journal of virology》2003,77(23):12720-12728
Helicase activity is required for T antigen to unwind the simian virus 40 origin. We previously mapped this activity to residues 131 and 616. In this study, we generated a series of mutants with single-point substitutions in the helicase domain to discover other potential activities required for helicase function. A number of DNA unwinding-defective mutants were generated. Four of these mutants (456RA, 460ED, 462GA, and 499DA) were normal in their ability to hydrolyze ATP and were capable of associating into double hexamers in the presence of origin DNA. Furthermore, they possessed normal ability to bind to single-stranded DNA. However, they were severely impaired in unwinding origin-containing DNA fragments and in carrying out a helicase reaction with an M13 partial duplex DNA substrate. Interestingly, these mutants retained some ability to perform a helicase reaction with artificial replication forks, indicating that their intrinsic helicase activity was functional. Intriguingly, these mutants had almost completely lost their ability to bind to double-stranded DNA nonspecifically. The mutants also failed to melt the early palindrome region of the origin. Taken together, these results indicate that the mutations have destroyed a novel activity required for unwinding of the origin. This activity depends on the ability to bind to DNA nonspecifically, and in its absence, T antigen is unable to structurally distort and subsequently unwind the origin.  相似文献   

10.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

11.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

12.
The simian virus 40 (SV40) core origin of replication consists of three functional domains. The sequence 5'-CACTACTTCTGGAATAG-3' with an imperfect inverted repeat (underlined), a palindrome with four 5'-GAGGC-3' pentanucleotide repeats, and a 17-base-pair A + T-rich segment. We have been able to assign primary functions to each domain. Remarkably, SV40 large T antigen melted the inverted repeat domain in the complete absence of other origin sequences. Presumably, this protein-DNA interaction initiates a replication bubble that leads to daughter strand DNA synthesis. The pentanucleotide domain alone docked and arranged T antigen at the origin. The A + T-rich domain had no independent function, but, in the presence of the other two domains, allowed bound T antigen to extend the replication bubble. Thus, three domains of the origin coordinate the binding, melting, and DNA helicase activities of T antigen in an ordered sequence of events to initiate DNA replication.  相似文献   

13.
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.  相似文献   

14.
Simian virus 40 large T antigen from lytically infected cells has been purified to near homogeneity by immunochromatography of the cell extract on a protein A-Sepharose-monoclonal antibody column. The resulting T antigen retains biochemical activity; i.e., it hydrolyzes ATP and binds to simian virus 40 DNA at the origin of replication.  相似文献   

15.
Unwinding of chromatin by the SV40 large T antigen DNA helicase.   总被引:6,自引:1,他引:5       下载免费PDF全文
U Ramsperger  H Stahl 《The EMBO journal》1995,14(13):3215-3225
We have analysed the unwinding of nucleosomally organized DNA by simian virus 40 large tumour (T) antigen. Isolated T antigen can bind to existing nucleosome cores containing the viral replication origin sequence, which results in displacement of the histone octamer and unwinding of the DNA. However, specific binding to nucleosome cores is salt sensitive and nearly completely blocked under ionic conditions that otherwise support DNA replication. Once started, the progressing T antigen helicase, like an elongating RNA polymerase, is not further repressed by histone octamers, irrespective of the presence or absence of linker histone H1. Disruption of the nucleosomal structure in the process of unwinding may be assisted by the demonstrated interaction of the hexameric T antigen complex with histone proteins H1 and H3. Finally, our studies reveal the inability of topoisomerase I and/or II to continually relieve the superhelical tension of covalently closed circular minichromosomes as generated during their unwinding by T antigen. This may indicate that chromatin relaxation during the process of DNA replication can only be efficiently performed by a topoisomerase that is (trans)activated by other factors.  相似文献   

16.
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.  相似文献   

17.
A specific DNA unwinding activity associated with SV40 large T antigen   总被引:3,自引:0,他引:3  
The incubation of highly purified large T antigen with relaxed, circular SV40 DNA in the presence of topoisomerase I (nicking closing enzyme) resulted in the introduction of negative superhelical turns in the DNA. ATP was not required for this reaction. A similar introduction of superhelical turns could also be obtained when a recombinant plasmid DNA (Y182), which contains sequences from both SV40 DNA and pBR322, was used. However, no effect was observed when relaxed pBR322 DNA, which does not contain SV40 DNA sequences, was incubated with T antigen in the presence of topoisomerase. These results are consistent with the hypothesis that large T antigen can recognize and unwind specific sequences on SV40 DNA.  相似文献   

18.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

19.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

20.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号