首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wall mannoproteins of the two (yeast and mycelial) cellular forms of Candida albicans were solubilized by different agents. Boiling in 2% (w/v) SDS was the best method, as more than 70% of the total mannoprotein was extracted. Over 40 different bands (from 15 to 80 kDal) were detected on SDS-polyacrylamide gel electrophoresis of this material. The residual wall mannoproteins were released after enzymic (Zymolyase and endogenous wall beta-glucanases) degradation of wall glucan, suggesting that they are covalently linked to this structural polymer. Four bands (of 160 kDal, 205 kDal and higher molecular mass) were observed in the material released from yeast walls but only the two smaller components were detected in the material obtained from mycelial walls. Moreover, the mannoproteins of high molecular mass, which are covalently linked in walls of normal cells, were not incorporated into walls of regenerating protoplasts, but non-covalently linked mannoproteins were retained from the beginning of the process.  相似文献   

2.
Different techniques released from the wall of Candida albicans mycelial cells high molecular weight mannoprotein materials with different levels of complexity. SDS solubilized among others one protein of 180 kDa which reacted with a monoclonal antibody (MAb) specific of a O-glycosylated protein secreted by regenerating mycelial protoplasts [Elorza et al. (1989) Biochem Biophys Res Commun 162:1118–1125]. Zymolyase, chitinase and -mercaptoethanol, released different types of high molecular highly polydisperse mannoprotein materials (>180 kDa) that also reacted with the same MAb. These materials had N-glycosidically linked sugar chains, in addition to the O-glycosidically bonded sugars, as their molecular masses were significantly reduced by Endo H digestion. Besides, the specific materials released by either zymolyase or chitinase seemed to be the same throughout the process of germ tube formation. Transmission electron microscopy of thin sections of cells and walls showed that mannoproteins and chitin are evenly distributed throughout the entire cell wall structure.  相似文献   

3.
Inhibition of the synthesis of alkali-insoluble glucan by aculeacin A in Saccharomyces cerevisiae cells caused a decrease in the incorporation of a high molecular weight heterogeneous mannoprotein material and of a 33000 mannoprotein into the wall network. This was concomitant with the excretion of the latter molecule into the growth medium. Regenerating yeast protoplasts liberated considerable amounts of the heterogeneous material to the medium independently of the presence of aculeacin. The protoplast walls did lack this component and contained only minor amounts of the 33000 molecule, which was also completely absent from walls of aculeacin-treated protoplasts. Considerable levels of the 33000 species were immunodetected in the supernatants from treated and untreated protoplasts. These results point to the existence of specific interactions between the glucan network of the yeast cell surface and some of the wall mannoproteins. On the other hand, the presence of a population of SDS-solubilizable mannoproteins in the wall was independent of glucan levels.Abbreviations SDS sodium dodecyl sulphate - YNB Yeast nitrogen base  相似文献   

4.
Characterization of common cell surface-bound antigens inCandida albicans strains, particularly those expressed in the walls of mycelial cells might be useful in the diagnosis of systemic candidiasis. Hence, antigenic similarities among wall proteins and mannoproteins fromC. albicans clinical serotype A and B isolates, were studied using polyclonal (mPAbs) and monoclonal (MAb 4C12) antibodies raised against wall antigens from the mycelial form of a commonC. albicans serotype A laboratory strain (ATCC 26555). Zymolyase digestion of walls isolated from cells of the different strains studied grown at 37°C (germination conditions), released, in all cases, numerous protein and mannoprotein components larger than 100 kDa, along with a 33–34 kDa species. The pattern of major antigens exhibiting reactivity towards the mPAbs preparation was basically similar for all the serotype A and B isolates, though minor strain-specific bands were also observed. The immunodeterminant recognized by MAb 4C12 was found to be absent or present in very low amounts inC. albicans isolates other than the ATCC 26555 strain, yet high molecular weight species similar in size (e.g., 260 kDa) to the wall antigen against which MAb 4C12 was raised, were observed, particularly in wall digests from serotype A strains. Cell surface hydrophobicity, an apparently important virulence factor inC. albicans, of the cell population of each serotype B strain was lower than that of the corresponding serotype A counterparts, which is possibly due to the fact that the former strains exhibited a reduced ability to form mycelial filaments under the experimental conditions used.Abbreviations CSH cell surface hydrophobicity - IIF indirect immunofluorescence  相似文献   

5.
Candida albicans ATCC 26555 switched at high frequency (10(-1) to 10(-3)) between several phenotypes identified by colony morphology on a defined mineral amino-acid-containing agar medium supplemented with arginine and zinc (LAZ medium). When cells taken from colonies exhibiting distinct morphologies were plated directly onto LAZ agar, spontaneous conversion to all the variant phenotypes occurred at combined frequencies of 2.1 x 10(-1) to 9.5 x 10(-3). However, when cells taken from the different colonial phenotypes were plated directly onto an undefined medium (yeast extract/peptone/dextrose; YPD medium), or first incubated in liquid YPD medium and then cloned on YPD agar, all colonies observed exhibited the same phenotype (smooth-white). When cells from the smooth-white colonies were plated as clones on LAZ agar, the original switch phenotype reappeared. These results suggest that environmental conditions such as the growth medium (and possibly the temperature) influence switching by suppressing phenotype expression, but have no effect on genotype. The variant colony morphologies also appeared to be associated with differences in the relative proportions of yeast and mycelial cells. Zymolyase digests of wall preparations obtained from cells belonging to different colonial phenotypes were analysed by SDS-PAGE. After blotting to nitrocellulose paper, the mannoproteins were stained with Concanavalin A, with a polyclonal antiserum enriched in antibodies against mycelium-specific wall components, and with a monoclonal antibody raised against a high-molecular-mass mannoprotein band (260 kDa) specific to the walls of mycelial cells. The results suggest that phenotypic switching might be associated with changes in the degree of glycosylation in high-molecular-mass mannoproteins, or in the way these mannoproteins are bound to other cell wall components.  相似文献   

6.
Activity of the enzyme glutaminyl-peptide-γ-glutamylyl-transferase (EC 2.3.2.13; transglutaminase), which forms the interpeptidic cross-link N-(γ-glutamic)-lysine, was demonstrated in cell-free extracts obtained from both the yeast like and mycelial forms ofCandida albicans. Higher levels of enzymatic activity were observed in the cell wall fraction, whereas the cytosol contained only trace amounts of activity. Cystamine, a highly specific inhibitor of the enzyme, was used to analyze a possible role of transglutaminase in the organization of the cell wall structure of the fungus. Cystamine delayed protoplast regeneration and inhibited the yeast-to-mycelium transition and the incorporation of proteins into the cell wall. The incorporation of covalently bound high-molecular-weight proteins into the wall was sensitive to cystamine. Proteic epitopes recognized by two monoclonal antibodies, one of which is specific for the mycelial walls of the fungus, were also sensitive to cystamine. These data suggest that transglutaminase may be involved in the formation of covalent bonds between different cell wall proteins during the final assembly of the mature cell wall.  相似文献   

7.
Analysis of velum-forming yeast cell wall components released by beta-1,3-glucanase treatment were compared with those of a non velum-forming yeast. SDS-PAGE electrophoresis and Western blotting with ConA-peroxidase staining of mannoproteins allowed us to identify a 49-kDa mannoprotein present in the cell wall of the velum-forming yeast and hardly visible in the control. The cell wall nature of this protein was confirmed by labelling with the non-permeable sulfosuccinimydiyl-6-(biotinamido)hexanoate reagent. A partial purification of this mannoprotein by anion exchange HPLC followed by surface hydrophobicity determination revealed that the fraction containing the 49-kDa mannoprotein was the most hydrophobic. Since cell surface hydrophobicity plays an important role in aggregate formation, it is likely that this mannoprotein is involved in velum formation.  相似文献   

8.
The cell walls of the yeast and mycelial forms of Yarrowia lipolytica were isolated and purified. Electron microscopy studies showed no differences between both types of cell walls. Chemical analysis revealed that the yeast cell wall contained 70% neutral carbohydrate, 7% amino sugars, 15% protein, 5% lipids and 0.8% phosphorus. Mycelial cell walls contained 70% carbohydrate, 14% aminosugars, 6% protein, 5% lipids and 0.6% phosphorus. Three polysaccharides: -glucan, mannan and chitin were detected. Proteins were solubilized from both cell wall fractions and separated by polyacrylamide gel electrophoresis. About 50 protein bands were detected, four of them corresponding to glycoproteins. The cell walls of the yeast and mycelial forms of Y. lipolytica were qualitatively similar and only quantitative differences were found.Abbreviations GlcNAc N-acetylglucosamine - FITC-WGA fluorescein isothiocyanate-wheat germ agglutinin - PAS periodic acid Schiff  相似文献   

9.
A beta-glucanase (Z-glucanase) from Zymolyase was freed from a protease (Z-protease) by affinity chromatography on alpha 2-macroglobulin-Sepharose columns and used to solubilize proteins from isolated cell walls of Saccharomyces cerevisiae. The cell wall proteins were labeled with 125I and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The bulk of the labeled material had very low mobility. Its mannoprotein nature was demonstrated by precipitation with specific antibodies and by conversion to a band with an average molecular weight of 94,000 after incubation with endo-beta-N-acetylglucosaminidase. The intact mannoproteins were hydrolyzed by Z-protease, but were resistant to the enzyme when the carbohydrate was first removed by endo-beta-N-acetylglucosaminidase. In intact cells, lysis of cell walls by Z-glucanase required a previous incubation with z-protease, which led to solubilization of most of the 125I-labeled proteins. Other proteases that did not attack the cell wall mannoproteins were unable to substitute for Z-protease. The specific effect of Z-protease is consistent with the notion that mannoproteins form a surface layer of the cell wall that penetrates the wall to some depth and shields glucans from attack by Z-glucanase. Mannoproteins, however, do not appear to cover the inner face of the cell wall, because isolated cell walls, in contrast to intact cells, were completely solubilized by Z-glucanase in the absence of protease. The function of mannoproteins in determining cell wall porosity was highlighted by the finding that horseradish peroxidase (Mr, 40,000) causes lysis of cells that had been treated with Z-protease. Depletion of mannoproteins by Z-protease also resulted in the disappearance of a darkly stained surface layer of the cell wall, as observed by electron microscopy. Other agents that facilitate cell lysis by Z-glucanase, such as 2-mercaptoethanol, digitonin, and high concentrations of salts, caused little or no solubilization of mannoprotein. We assume that they perturb and loosen the structure of the mannoprotein network, thereby increasing its porosity. The implications of our results for the construction of the yeast cell wall and the anchoring of mannoprotein to the cell are discussed.  相似文献   

10.
Zygocin, a protein toxin produced and secreted by a killer virus-infected strain of the osmotolerant yeast Zygosaccharomyces bailii, kills a great variety of human and phytopathogenic yeasts and filamentous fungi. Toxicity of the viral toxin is envisaged in a two-step receptor-mediated process in which the toxin interacts with cell surface receptors at the level of the cell wall and the plasma membrane. Zygocin receptors were isolated and partially purified from the yeast cell wall mannoprotein fraction and could be successfully used as biospecific ligand for efficient one-step purification of the 10-kDa protein toxin by receptor-mediated affinity chromatography. Evidence is presented that zygocin-treated yeast cells are rapidly killed by the toxin, and intensive propidium iodide staining of zygocin-treated cells indicated that the toxin is affecting cytoplasmic membrane function, most probably by lethal ion channel formation. The presented findings suggest that zygocin has potential as a novel antimycotic in combating fungal infections.  相似文献   

11.
Whole cells and cell walls of the mycelial and yeast forms ofBlastomyces dermatitidis grown in four different media were analyzed for differences in lipid, fatty acid, carbohydrate, and protein contents. The bound (saponifiable) fatty acids of yeast and mycelial whole cells (but not the cell walls) vary considerably in response to growth medium. The percentage of readily extractable lipid varied somewhat in whole cells. The percentage of carbohydrate and protein of whole cells and cell walls are little affected by the medium in which the cells are grown.  相似文献   

12.
The optimal conditions for protoplast formation ofCandida apicola were by using an enzyme fromArthrobacter sp. in combination with 2-mercaptoethanol. The kinetic data support the two-layered structure model of cell wall for this yeast but the structure of the cell wall depended on the age of cells and culture conditions. To regenerate the protoplasts, the type of osmotic stabilizer was important: sorbitol gave 16 to 30% regeneration. Electron microscopy revealed the presence of vesicles in the sections of protoplasts and whole cells ofCandida apicola grown in production medium and producing glycolipids. In sections of whole cells, vesicle-like structures are located in the periplasmic space and in protoplasts they can either be attached to, or released from, the cell surface. These vesicles are thought to be involved in the transport of the surface-active glycolipids and in the protection of the cell against denaturing effects.  相似文献   

13.
Mycelial cell wall of Aspergillus oryzae M-13 grown in an alpha-amylase-forming medium could not bind alpha-amylase (Taka-amylase A, EC 3.2.1.1). However, by treatment with 1.0 n NaOH at 100 C for 30 min, the wall gained the ability to bind alpha-amylase. This phenomenon was caused by removal of a factor (designated as masking factor) which masked the binding site for alpha-amylase. The masking factor was purified as a preparation giving a single peak in both ultracentrifugation (1.6S) and by gel electrophoresis (M(BPB), 1.0). Approximately 20 mug of the purified factor, bound to 10 mg of the alkali-treated mycelial cell wall, prevented the binding of approximately 100 mug of alpha-amylase or released approximately 100 mug of alpha-amylase which previously was bound to the alkali-treated wall. These findings indicate that the factor has much higher affinity than alpha-amylase for the binding site on the mycelial wall. The masking factor was inducibly formed accompanying the secretion of alpha-amylase.  相似文献   

14.
We discovered that a mutant strain of the dimorphic yeast Yarrowia lipolytica could grow in the yeast form in high concentrations of copper sulfate. The amount of metal accumulated by Y. lipolytica increased with increasing copper concentrations in the medium. Washing with 100 mM EDTA released at least 60% of the total metal from the cells, but about 20–25 μmol/g DW persisted, which represented about 30% of the soluble fraction of cultured cells. The soluble fraction (mainly cytosol) contained only about 10% of the total metal content within cells cultured in medium supplemented with 6 mM copper. We suggest that although a high copper concentration induces an efflux mechanism, the released copper becomes entrapped in the periplasm and in other parts of the cell wall. Washing with EDTA liberated not only copper ions, but also melanin, a brown pigment that can bind metal and which located at the cell wall. These findings indicated that melanin participates in the mechanism of metal accumulation. Culture in medium supplemented with copper obviously enhanced the activities of Cu, Zn-SOD, but not of Mn-SOD.  相似文献   

15.
Mannoprotein with emulsification properties was extracted from the cell walls of Kluyveromyces marxianus grown on a lactose-based medium by autoclaving cells in a citrate buffer at pH 7.The purified product was evaluated for chemical and physical stability to establish its potential use as a natural emulsifier in processed foods. The yield of purified bioemulsifier from this strain of K. marxianus was 4–7% of the original dry cell weight. The purified product, at a concentration of 12 g l–1, formed emulsions that were stable for 3 months when subjected to a range of pH (3–11) and NaCl concentrations (2–50 g l–1). The composition of this mannoprotein was 90% carbohydrate (mannan) and 4–6% protein. These values are similar to mannoprotein extracted from cells of Saccharomyces cerevisiae, which is the traditional source. Consequently K. marxianus cultivated on a low-cost lactose-based medium such as whey, a lactose-rich clean waste of the dairy industry, could be developed as a source of bioemulsifier for use in the food industry.  相似文献   

16.
Novel additives that act as substratum for attachment of the yeast cells, increased ethanol production in Saccharomyces cerevisiae. The addition of 2 g rice husk, straw, wood shavings, plastic pieces or silica gel to 100 ml medium enhanced ethanol production by 30–40 (v/v). Six distillery strains showed an average enhancement of 34 from 4.1 (v/v) in control to 5.5 (v/v) on addition of rice husk. The cell wall bound glycogen increased by 40–50 mg g –1 dry yeast while intracellular glycogen decreased by 10–12 mg g–1 dry yeast in cells grown in presence of substratum  相似文献   

17.
Generally, natural isolates of high ethanol producingSaccharomyces cerevisiae obtained by screening are used in alcoholic industries. The methods involved in their isolation and identification are elaborate. Antigenic analysis using antibodies raised against wholeSaccharomyces cells indicated species specificity of cell wall surface thermostable antigens. By affinity purification, the specific antibodies could be obtained and used for specific isolation ofS. cerevisiae. Antigenic studies using antibodies raised against isolated cell walls of fermentatively grownS. cerevisiae indicated the occurrence of thermolabile antigens common toSaccharomyces species. Higher concentrations of these antigens could be detected in thoseS. cerevisiae that had the ability for high ethanol production. The concentrations of these cell wall common antigens increased with increasing culture age and ethanol accumulation in culture broths. In younger yeast cells, the concentration could be increased by growing the cells in a medium containing added ethanol. Using dilutions of cross absorbed antibody specific for common antigens and Ouchterlony test, high ethanol producingS. cerevisiae could be identified.  相似文献   

18.
In the dimorphic zygomycetous fungusBenjaminiella poitrasii, the cell wall compositions of mycelial phase (M), yeast phase (Y) and its yeast form mutants (Y-2 and Y-5) were studied. Chitosan was abundant in M-phase (26.6%) whereas lesser amounts were present in Y-phase (17.3%) and in mutants Y-2 (19.6%) or Y-5 (17.3%). Although chitin was present as a smaller fraction of the total glucosaminoglycan in each of different cell wall preparations, it was almost 3 times more prevalent in M-phase than the Y-phase cells. Cross-linking studies among the various cell wall components inB. poitrasii, suggest linkages among mannans and proteins and glucans and glucosaminoglycans.NCL Communication No. 5111.  相似文献   

19.
Influence of yeast quality on performance of gnotobiotically grown Artemia   总被引:1,自引:0,他引:1  
Using axenically grown Artemia, a model system was developed to evaluate the effect of bacteria on the survival and development of this crustacean. Two strains of baker's yeast (Saccharomyces cerevisiae) were used in all experiments as feed for Artemia: a wild-type strain and its mnn9 mutant, defective in the synthesis of mannoproteins in the outer cell wall. The genetic background, yeast growth phase and growth medium appeared to be important parameters determining the quality of yeast cells as feed for Artemia. A strong positive correlation between Artemia performance and the yeast cell wall chitin and glucan content was obtained, while the mannoprotein content was negatively correlated. Mnn9 yeast cells grown till exponential phase in minimal medium proved to be excellent feed for Artemia, yielding an average 95% survival and 4-mm growth after 6 days at 28 °C, which is comparable to the best results obtained with algal feed. The standard growth test yields highly reproducible results and can become an excellent tool to study the mode of action of bacteria. Furthermore, yeast cell viability and the method used to kill/sterilize the cells are important parameters influencing nauplii performance.  相似文献   

20.
Experimental parameters for isolation and regeneration of protoplasts from the mycelial and yeast form cells of the dimorphic zygomycete Benjamininiella poitrasii are reported. Using a chitosanase containing preparation from Streptomyces sp. MCl we obtained protoplasts after 5 h incubation with a yield of 2+/-0.3 x 10(6) ml(-1) and 3+/-0.4 x 10(7) ml(-1) for the mycelial and yeast form, respectively. During regeneration under conditions triggering dimorphism the two morphological forms were observed after 36 h. Initially, for 10-12 h only an irregular mass was formed as a result of deregulated cell wall synthesis. Among the tested inhibitors influencing cell wall metabolism, chitin metabolism inhibitors showed distinctive effects on the regeneration of protoplasts suggesting that the respective enzymes significantly contribute to determining the morphogenesis of the dimorphic fungus B. poitrasii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号