首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Summary The ultrastructure of the neural lobe of the lizard, Anolis carolinensis, was studied after fixation in a threefold aldehyde solution. The neural lobe appeared as narrow vertical diverticula separated from one another and from the pars intermedia by a continuous vascular septum. No nerves passed through this septum. The ependymal, fibrous and external layers were readily recognized. Peptidergic fibres were the main component of the fibrous layer. The peptidergic endings were in intimate contact with the ependymal cells, suggesting that the ependyma mediates the release of neural lobe peptides. The external layer contained ependymal end-feet and numerous aminergic terminals, ending directly on the perivascular basal lamina and/or on the ependymal end-feet. The functional aspects are discussed in terms of intermediate lobe control. The findings suggest that aminergic substances take part in the control of the intermedia, but do not exclude the involvement of peptide hormones.Supported by grants from the Swedish Natural Science Research Council and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Lena Sandell for valuable technical assistance and to Miss Inger Norling and the late Mr. Lajos Erdös for photographic aid  相似文献   

2.
Summary The structure of the pars intermedia of the ferret has been studied with the electron microscope, with particular reference to the morphology of the glandular cells and their innervation. Two types of cell were found. The predominant cell is ovoid in shape and contains membrane-bound vesicles of varying size (1,000–5,000 Å) and density, the most electron-dense of which are associated with the Golgi region. The nucleus is indented and the cytoplasm contains rough endoplasmic reticulum. The second cell type is often associated with the colloid material and is elongated or stellate-shaped with long processes which extend between the predominant cells. It is devoid of cytoplasmic vesicles and has a poorly defined Golgi apparatus. Certain other structural features of this cell such as microvilli, cilia or cytoplasmic microfilaments are reminiscent of ependymal cells.Numerous nerve endings are observed throughout the pars intermedia, making synaptic contact with the predominant cell type. The majority contain vesicles with an electron-dense core measuring 750 Å; less frequently terminals contain dense granules measuring 1,000 A or more. Both also contain small electron-lucent vesicles (200–400 Å); occasionally terminals containing only the latter type are found. The pattern of innervation in the ferret is thus comparable to that previously observed in the cat, rather than that seen in rodents or monkeys, and the implications of this finding are discussed.We are indebted to Prof. Sir Solly Zuckerman, O. M., K. C. B., F. R. S., for his help and guidance and to Mr. J. Wallington for his unfailing technical assistance.  相似文献   

3.
Summary Light microscopy of coronal sections of the sheep pars intermedia revealed a compact, incompletely lobulated V-shaped region about 15–20 cells thick, situated between the pars distalis and the pars nervosa. A prominent hypophysial cleft and follicles containing a colloid-like substance were seen.Using electron microscopy, five cell types could be distinguished: pars intermedia glandular cells, pars distalis-like glandular cells, interstitial cells, follicular cells and cleft lining cells. The polyhedral to pear-shaped pars intermedia glandular cells predominated. They contained dense-cored, membrane-bound granules near the Golgi complex, and larger, irregular vesicles with finely granular contents of varying electron density throughout the remaining cytoplasm; exocytotic release of granules was occasionally observed. Smaller numbers of cells resembling those seen in the pars distalis were scattered throughout the pars intermedia. Interstitial cells usually possessed elongated cytoplasmic processes which extended between the glandular cells, and were characterized by deeply indented nuclei, elaborate junctional complexes and an absence of cytoplasmic granules. Cells lining the follicles resembled the interstitial cells. The major cells bordering the hypophysial cleft were triangular in section and bore irregular microvilli on their free surface. The pars intermedia appeared to be less vascular than the remainder of the hypophysis and only occasional fenestrated capillaries were seen. Nerve profiles were rare.  相似文献   

4.
Summary The posterior neurohypophysis (PNH)-pars intermedia complex of the wild and pond carp, Cyprinus carpio L., has been studied by light, fluorescence and electron microscopy. Gomori-positive neurosecretory fibres are abundant in the main trunk of the neurohypophysis as well as its roots penetrating the pars intermedia. Terminals of these fibres are in contact with capillaries of the general circulation and with glandular cells of the pars intermedia. Monoaminergic fibres with a weak green fluorescence, somewhat increasing after injection of nialamide into the pond carp, have largely the same distribution. Three types of neurosecretory fibres and their terminals have been recognized in the PNH-pars intermedia complex. Types-A1 and -A2 fibres, containing granules of 140–180 nm and 100–160 nm in diameter respectively, are peptidergic Gomori-positive. Type-A2 fibres predominate in the PNH. The least frequent monoaminergic type-B fibres have granules of 60–100 nm in diameter. Numerous peptidergic and few monoaminergic neurosecretory terminals make contact with the capillaries located within the roots of the PNH as well as at the border between them and the pars intermedia. Both peptidergic and monoaminergic terminals make direct synaptoid contacts with the gland cells or end close to connective tissue septa, basal lamina or pituicytes. The PAS-positive gland cells and to a lesser degree the leadhaematoxylin-positive gland cells show these relationships with neurosecretory terminals. The question concerning the mode of interaction between peptidergic and monoaminergic structures in the dual control of the gland cells of the pars intermedia of teleosts is discussed.  相似文献   

5.
Summary The structure of the neurohypophysis of Poecilia latipinna (green molly, sailfin molly) was studied with the electron microscope. Profile diameters of neurosecretory granules in the non-myelinated neurohypophysial nerve fibres were measured and mathematically corrected for error due to section thickness. Six different types of nerve fibres could be distinguished by statistical classification of their granules and by other ultrastructural features. One fibre-type (type B) contained granules with a mean diameter of 85 nm, and the other five types (types Ala, Alb, A2, A3 and A4) all contained granules with mean diameters greater than 100 nm. Synaptic contacts were observed between type B fibres and all the adenohypophysial cell-types, although in the case of the ACTH cells the synapses were separated from the cell membrane by a continuous double basement membrane. Type A fibres were observed to contact the cells of the proximal pars distalis and pars intermedia, but did not form synapses. However, synapses occurred between type A fibres and pituicytes, and between type A fibres and the pericapillary basement membrane in the interior of the neurohypophysis. The possible roles of the different types of nerve fibres in controlling the adenohypophysial cells are discussed in the context of evidence from other teleosts.We thank Mr. W.A. Thomson and Mr. D.I. Hollingworth for technical assistance, and Dr. D.I.C. Pearson (Department of Physics, University of Nancy, Nancy, France) for advice on mathematical analysis and computer programs. The work was carried out during the tenure of an S.R.C. Research Studentship by T.F.C.B.  相似文献   

6.
Summary In the neuro-intermediate lobe (NIL) of the eel, Anguilla anguilla, a specific formaldehyde-induced fluorescence, indicating a catecholamine (CA) innervation, has been demonstrated in the neural lobe processes. Microspectrofluorimetric analyses and pharmacological treatments indicate noradrenaline or dopamine or both to be responsible for the fluorescence.The fluorescence in the NIL has displayed a definite tendency toward variation during the adaptation to a white and to a black background. The highest amounts of fluorescence were generally found in animals adapted to a black background, especially when adapted for a rather long period, and in animals recently transferred to a white background. The lowest amounts of fluorescence were generally found in animals adapted to a white background.This and the result of injections of CA-depleting drugs suggest that the monoaminergic nerves are active when the animal is on a white background, inhibiting the MSH release directly or indirectly or both, or in co-operation with other factors.Specific green fluorescent structures were also found in other parts of the neural lobe supplying the pars distalis.In some pharmacologically untreated specimens and in animals treated with CA-depleting drugs, the intermedia cells fluoresced. Microspectrofluorimetric analyses indicated that this fluorophore was not a CA.We wish to express our sincere thanks to Miss Ingrid Carlsen for excellent technical assistance, Mr. Lajos Erdös for the photography and the technical staff of the Department of Histology in Lund. We are also indepted to Dr. Anders Björklund for valuable discussion and advice.Supported by grants from the Swedish Natural Science Research Council, the University of Lund, and the Royal Physiographic Society of Lund.  相似文献   

7.
Summary Nerve fibres containing granular vesicles first appear in the median eminence of the rat on the 16th foetal day while secretory granules in the cells of the adenohypophysis are not present till the 17th foetal day. These observations suggest that the differentiation and early activity of pars distalis cells may depend on substances elaborated at nerve terminals in the median eminence. Although the loops of the primary plexus of portal vessels do not develop until the 4th postnatal day, substances released by nerve fibres in the neurohypophysis could reach the pars distalis through vessels already present at the 15th foetal day in the mesenchyme between the diencephalon and the adenohypophysis. This view is supported by the fact that the earliest cells to exhibit ultrastructural evidence of secretory activity are in the rostral pole of the pars distalis, the first region of the gland to become vascularized. The earliest granules to appear in the cells of the pars distalis correspond to those which are considered to contain mucoprotein hormones; somatotrophin type granules were seen only in postnatal tissues.The finding that, in the median eminence, the development of granular vesicles precedes that of agranular vesicles is discussed with reference to the times at which neurosecretory materials and monoamines become detectable in the region.We should like to thank Miss Ann Pearson, Mr. D. Burns, and Mr. J. Nailon for their technical assistance, and Mr. J. Simmons, F.R.P.S., for his help in the preparation of illustrations. This work was supported by grants from the National Health and Medical Research Council of Australia.  相似文献   

8.
Summary The classical areas for arginine-vasopressin (AVP) synthesis are the magnocellular supraoptic (SON) and paraventricular nuclei. More recently AVP was also demonstrated in neurons of the parvocellular suprachiasmatic nucleus (SCN) of the rat. This result was substantiated in the present study by means of immunoelectron microscopy, by subjecting sections to antivasopressin plasma. Conventional electron microscopy revealed dense-core vesicles in the SCN cell bodies and fibres (mean diameter 94.7±0.9 nm and 84.0±1.1 nm respectively). These vesicles were infrequent within the cell bodies and could not be accumulated by ethanol administration. Immunoelectron microscopy showed a positive reaction in the cell bodies and fibres within vesicles of 93.7±1.1 nm and 98.5±1.2 nm respectively. By comparison, the cell bodies and fibres of the SON showed immunoreactive granules of 143.0±1.8 and 147.3±1.8 nm respectively. The presence in the SCN of AVP in vesicles of different size than those in the SON suggests that synthesis of this substance is indeed occurring within the SCN cells.Supported by The Foundation for Medical Research FUNGOThe authors wish to thank Dr. L.A. Sternberger (Edgewood Arsenal, Md., U.S.A.) for the peroxidase-anti-peroxidase complex, Dr. J.G. Streefkerk (Free University, Amsterdam) and the members of our project group Neuroendocrinology for their suggestions, Mr. P.S. Wolters and Miss A. van der Veiden for their skilled assistance  相似文献   

9.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

10.
Summary The innervation pattern of the intermediate lobe of the skate (Raja radiata) was studied with histological and fluorescence histochemical methods. Neurosecretory fibres, stained with i.a. pseudo-iso-cyanine, were found running in bundles in the central parts of the cell cords. They terminated partly around the perinuclear parts of the intermedia cells, partly around the apices of the cells close to the vascular walls.A catecholamine innervation of the intermedia was also established. Catecholaminecontaining fibres with the appearance of nerve terminals were found around the intermedia cell apices close to the vessels. In some specimens, catecholamine fibres also seemed to terminate at the perinuclear parts of the cells.Thus it is possible, judging solely from structural relations, that both the cell body (the synthesis pole) and the cell apex (the release pole) receive a dual innervation. Recent experimental evidence indicates that the release of MSH from the pars intermedia is controlled by catecholamine fibres, but as yet there is only structural evidence for a special control of hormone synthesis.This study was supported by grants from the Swedish Natural Science Research Council (No. 99-35 and 2126-2) and was carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-712-05 and B70-14X-56-06).  相似文献   

11.
Summary The fine structure of each type of anterior pituitary cell in the male goat was studied through the application of a superimposition technique in which adjacent thick sections were used to identify individual cells beforehand by light-microscopic immunohistochemistry. A cone of the pars intermedia protrudes into the pars anterior, being surrounded by the narrow pituitary cleft; the immunohistochemical appearances of the cells forming the cone resemble those of the pars anterior. Several follicles appear in the pars anterior. Ultrastructurally GH cells resemble prolactin cells. The secretory granules of both types are spherical; the diameter of the former is about 340 nm, whereas that of the latter is about 440 nm. ACTH cells are polygonal in shape with secretory granules, about 180 nm in diameter, scattered throughout the cytoplasm. TSH cells, which are spherical in shape, contain the smallest secretory granules, 150 nm in diameter. The highly electron-dense LH cells contain numerous secretory granules about 210 nm in diameter. Their nuclei are irregular with incisures. Thus, the anterior pituitary cells of the goat are ultrastructurally characteristic and species-specific.  相似文献   

12.
The pituitary pars intermedia of Camelus dromedarius is well developed and completely surrounds the pars nervosa. Two major groups of cells are present: endocrine (ec) and glial-like cells (glc). The ec group is composed of three morphologically distinct cell types. Type I, or polyhedral light cells (LC-I) and type II, or polyhedral dark cells (DC-II), have secretory granules of heterogeneous electron density whose size ranges from 170 to 300 nm. Type III cells are elongated with homogeneous electron-dense secretory granules of 80–200 nm. The glc make up an organized network, form follicles in the centrolobular zones and are positive for vimentin and S-100β immunolabelling. The nerve fibres penetrating the lobe are numerous, and can be classified into two types according to the membrane bound vesicles found in their endings (ne). Ultrastructural quantitative analysis revealed significant variations in PI elements between winter and summer seasons (F = 8.014, p = 0.006). DC-II cells characterized by developed biosynthetic machinery and a large pool of secretory granules storage are increased with the ne in winter. However, LC-I cells showing frequent cytoplasmic degranulation are predominant with glc in summer. Thus, important cellular remodelling occurs in the dromedary PI that may depend upon, or perhaps anticipate, external living conditions.  相似文献   

13.
Summary Using the electron-microscopic immunogold method, vasotocin, isotocin, somatostatin (SRIF), gonadotrophin-releasing hormone (LHRH) and corticotrophin-releasing factor (CRF)-like immunoreactivities were localized in separate neurosecretory fibres in the pituitary of a teleost fish Poecilia latipinna. Antigenicities were preserved in sections of conventionally fixed tissue, except in the case of LHRH and CRF-like substances which were sensitive to osmium postfixation. Under the same fixation conditions, ultrastructural differences were observed between the 5 fibre types, and morphometric analysis of their granule sizes revealed significant differences in mean diameter except between vasotocin and isotocin fibres.Terminal-like regions of each type were identified on blood vessels, glial cells or other fibres in the neurohypophysis, on the basement lamina of the adenohypophysis, or directly on adenohypophysial endocrine cells. The fibres containing the two neurohypophysial hormones, originating from separate preoptic perikarya, were intermingled with, and may form endings near all the adenohypophysial cell types except those secreting prolactin. Although both types had similar mean granule diameters, the granules in the vasotocin fibres (mean 135 nm) were markedly less electron dense than those in the isotocin fibres (mean 140 nm). SRIF-immunoreactive fibres (mean 101 nm) appeared to form synapse-like endings on the somatotrophs, and a few thyrotrophs in the proximal pars distalis, and near the pars intermedia cells. An LHRH-positive type (mean 103 nm) contacted only the gonadotrophs of the proximal pars distalis. The rarer CRF-like fibres (mean 116 nm) appeared to project mainly towards the pars intermedia, but a few appeared to terminate rostrally near the adrenocorticotrophic cells.The significance of these observations is discussed in relation to the direct neurosecretory control of adenohypophysial function in teleosts.  相似文献   

14.
Summary Nerve fibres of the neurosecretory hypothalamo-hypophyseal tract were studied in embryonic C3H mouse neural lobes; at least four glands at each gestational day 15–19 were examined.Single axons and small bundles of fibres are visible at gestational days 15 and 16. By day 17 large fibre bundles penetrate between glial cells. They increase in number during the next two days.Electron-lucent and electron-dense vesicles are seen in the fibres of the 15th and 16th gestational days. In the 17–19 day-old embryos development is characterized by a successive rise in the number of the two types of vesicles. The mean diameter of the electron-lucent vesicles is approximately unchanged in all the stages examined (50 nm). The electron-dense vesicles increase in size from approximately 80–90 nm at days 15–16 to 140 nm at the 19th gestational day.By day 19 contacts between neurosecretory fibre terminals and the outer basement membrane of internal and peripheral capillaries are occasionally observed. The possibly adrenergic nature of a few terminals contacting peripheral vascular structures in 17 and 18 day-old embryos is suggested.This investigation was supported by grant No. 2180-020 from the Swedish Natural Science Research Council. The skilful technical assistance of Mrs. Ulla Wennerberg is gratefully acknowledged.  相似文献   

15.
Summary The frontal ganglion, part of the stomatogastric nervous system, contains about 60 to 80 neurons, 25 to 30 m in diameter. A well developed Golgi system, producing dense-core vesicles, lysosomes, multivesicular bodies and dense bodies are abundant. Glia elements are sparsely distributed. Many nerve fibres contain granules of different size and electron density. Five groups of fibres can be distinguished: Fibres with granules of about 200 nm (type A), fibres with granules of about 160 to 170 nm (type B), fibres with granules of about 80 to 100 nm (type C) and those with synaptic vesicles of 50 nm (type D) respectively. A fifth very small type contains neither vesicles nor granules. Special attention was paid to synaptic contacts. The divergent dyad seems to be the main type in the frontal ganglion. Frequently, neurosecretory endings are observed in presynaptic position. Immunocytochemical staining of neurosecretory material closely corresponds to the distribution of type A fibres, as observed electron microscopically. Immunoelectrophoresis of extracts from frontal ganglia with polyspecific anti-neurosecretion-serum reveals a single precipitation line, indicating that the immunocytochemical localization of neurosecretory material is due to reaction with a specific as well as a crossreagent antibody.Supported by the Ministerium für Wissenschaft und Technik der DDRThe authors wish to thank Mrs. B. Cosack and Mrs. A. Schmidt for excellent technical assistance  相似文献   

16.
Summary Two cell types can be distinguished in the pars intermedia of Klauberina: (1) Glandular cells, which form a single-layered columnar epithelium on the vascular septum which divides the pars nervosa from the pars intermedia. (2) Marginal cells which form a flattened epithelium over the glandular cells and line the hypophysial cleft. Occasional projections from the marginal cells extend between the glandular cells to contact the basement membrane of the vascular septum, and occasional projections of the vascular septum extend across the glandular epithelium to reach the marginal epithelium. Both cell types are AF negative. The granules of the glandular cells are strongly PAS positive, and acidophilic in response to Mallory's trichrome stain. In electron micrographs, the glandular cells contain large quantities of secretory granules. In one class of cells, they range from 2,000 to 2,500 Å in diameter, in the other, from 4,000 to 5,000 Å. Electron-dense granules 1,000 to 1,500 Å in diameter occur in the cytoplasm of the marginal cells in the region of contact with the vascular septum. Hence more than one active principle may be produced by the pars intermedia.No nerve endings of any kind are present in the pars intermedia. Therefore, synaptic contact of neurons with the secretory cells seems not to be necessary for the regulation of their secretory activity as appears to be the case in other vertebrate groups. It is suggested that regulatory factors are secreted in the pars nervosa and transported to the pars intermedia via the vascular septum.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.This investigation was supported in part by a Public Health Service fellowship 1 FZ HD 32, 949-01 REP from the National Institute of Child Health and Human Development. The authors wish to thank Professor H. Heller for his encouragement and kind cooperation during this study and Professor H. D. Dellmann for providing the facilities of his department. They are indebted to the officers and men of the Naval Ordinance Test Station, Pasadena and San Clemente Island, California, for their help in obtaining animals for this investigation.  相似文献   

17.
Summary The effects of adenohypophysectomy were studied on the hypothalamichypophysial neurosecretory system and the adrenal glands of Bufo arenarum Hensel. An increase in vascularization of the pars intermedia was found and the neurosecretory material (NSM) in the glandular region of the median eminence disappeared. Its reappearance later was accompanied by hypertrophy of the pars intermedia; differentiated chromophil cells appeared in the pars intermedia around the vessels and, at the same time, the adrenal reverted to normal. These findings are interpreted as hypertrophy and differentiation of the pars intermedia with replacement, at least partly, of the functions of the pars distalis. The probable mechanism of differentiation and the functions of chromophil cells of the pars intermedia are discussed.This paper was presented at the VI Reunión de la Asociación Latinoamericana de Ciencias Fisiológicas (A.L.A.C.F.), Viña del Mar, Chile, 1964. It was carried out under the auspices of the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and the Rockefeller Foundation (School grant RF-58028).Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.The authors wish to thank Prof. M. H. Burgos for his constant interest, Prof. B. A. Houssay, Prof. H. Heller and Dr. J. H. Tramezzani for their criticisms, Miss B. Rodriguez and Mr. L. Castro for their technical assistance.  相似文献   

18.
Summary Exocytosis has been demonstrated by electron microscopy in the external zone of the median eminence of the rat. Exocytotic profiles have been observed in nerve fibres characterized by the presence of granular vesicles with median diameters of 90–103 nm and agranular vesicles of about 50 nm. In addition to the small agranular vesicles, coated vesicles of the same size have been found in many nerve fibres, suggesting that at least part of the agranular vesicles in the median eminence originate by micro-pinocytosis. The nature of the fibres showing exocytosis is discussed. Attention is drawn to the possibility of identifying types of fibres in the median eminence by the occurrence of exocytosis.The technical assistance of Mrs. R. M. Y. Hartsteen is acknowledged with gratitude. We would like to thank Prof. J. Moll for his helpful criticism. We also thank Miss P. Delfos and Mr. W. van den Oudenalder for photographic assistance.  相似文献   

19.
Summary The ultrastructure of seven types of neurosecretory cells (NSC) in the medial and lateral groups of the protocerebrum is described. The differences among cell types established earlier by light microscopy parallel differences in size and appearance of the neurosecretory particles observed in electron micrographs. No relationship was found between the affinity for Gomori's paraldehyde fuchsin stain and the nature of the particles.The secretions of the A-, A1-, and C-types of NSC of the medial group are characterized by electron-dense neurosecretory granules of 1250 Å dia., medium-dense granules of 2100 Å, and electron-lucent vesicles of 1700 Å, respectively. The L-type NSCof the lateral group contain smaller (1300 Å) or larger (1700 Å) neurosecretory granules. The medial B- and E-types of NSC and the lateral LB-type contain granulated vesicles (1200 Å) of the same appearance. These cell types differ in other respects and most likely have separate functions.The author wishes to thank the Laboratory of Virology of the Agricultural University for the use of the electron microscope, Mr. J. Groenewegen and Miss J. van Rinsum for technical assistance, and Professor J. Lattin for correcting the English text. Part of the work has been done while the author was in the service of the Netherlands Organization for the Advancement of Pure Research (ZWO, grant 942-48), and the National Council for Agricultural Research (TNO).  相似文献   

20.
Summary A rich system of monoamine-containing fibres is described in the neural lobe and pars intermedia of the pig and rat. a) A rich network of delicate varicose fibres is evenly distributed throughout the parenchyma of the neural lobe and surrounds the cells of the pars intermedia. b) Droplets or clusters of droplets are scattered throughout the neural lobe. Most of them probably constitute terminal swellings or end-apparatuses of smooth or varicose fibres. The number of droplets varies from animal to animal; they are found also in the pars intermedia. c) Coarse varicose fibres are mainly localized around larger vessels. At least some of these fibres are nerve fibres of sympathetic origin. A combination of fluorescence microscopy and aldehyde-fuchsin staining on the same sections demonstrated that the majority at least of these monoamine-containing structures were not identical with aldehyde-fuchsin positive neurosecretory fibres.This research was supported by a grant from the Swedish Medical Research Council (B68-12X-712-03B) and by the Faculty of Medicine, University of Lund.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号