首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the chemical basis of the Lowry protein determination   总被引:1,自引:0,他引:1  
The copper-catalyzed oxidation of peptides and proteins by phosphomolybdic/phosphotungstic acid (Folin phenol reagent) was studied with respect to redox stoichiometry of color formation and nature of the oxidation products. From peptides without reducing side chains two reducing equivalents were transferred under ideal conditions to Mo6+/W6+ for each unit of tetradentate copper complex with concomitant formation of an imino peptide. Tyrosine and tryptophan side chains contributed four additional reducing equivalents. Oxidation of proline-containing peptides was greatly impaired as judged from color formation due to the interference of the imino acid with complex formation. Reaction of the oxidized peptides with 2,4-dinitrophenyl (DNP)-hydrazine gave a peptide amine and the DNP-hydrazone of a 2-oxoacyl peptide. The oxidation products from tetraalanine were identified as dialanine amide and pyruvoylalanine DNP-hydrazone. From the time course of the development of the blue color on reduction of Folin reagent with tetraalanine it was inferred that the reaction consisted of an initial (less than 5 s) oxidation to a Cu3+ peptide complex followed by slow changes in absorbance, especially above 0.2 mM. Due to these complications the two-electron stoichiometry has to be considered only as a limiting case for peptide concentrations below 0.02 mM.  相似文献   

2.
Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 ?. The enzyme is a dimer with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity.  相似文献   

3.
A novel strategy to identify potent HIV-1 protease dimerization inhibitors was developed using 12-aminododecanoic acid as a tether to crosslink interfacial peptides. The directionality of the southern peptide was changed from N-->C to C-->N as compared to previously reported inhibitors. The terminal amine of the southern peptide and side chains were further diversified to find essential functional groups for dimerization inhibition of HIV-1 protease.  相似文献   

4.
In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination. To the secondary amine that is produced, an amino acid sequence is coupled via a standard solid-phase peptide synthesis protocol. Since one procedure can be applied for any given amine-functional moiety, a robust method for C-terminal peptide labeling is obtained.  相似文献   

5.
In this article, we present a new technique for the rapid and precise docking of peptides to MHC class I and class II receptors. Our docking procedure consists of three steps: (1) peptide residues near the ends of the binding groove are docked by using an efficient pseudo-Brownian rigid body docking procedure followed by (2) loop closure of the intervening backbone structure by satisfaction of spatial constraints, and subsequently, (3) the refinement of the entire backbone and ligand interacting side chains and receptor side chains experiencing atomic clash at the MHC receptor-peptide interface. The method was tested by remodeling of 40 nonredundant complexes of at least 3.00 A resolution for which three-dimensional structural information is available and independently for docking peptides derived from 15 nonredundant complexes into a single template structure. In the first test, 33 out of 40 MHC class I and class II peptides and in the second test, 11 out of 15 MHC-peptide complexes were modeled with a Calpha RMSD < 1.00 A.  相似文献   

6.
Self-degradable antimicrobial copolymers bearing cationic side chains and main-chain ester linkages were synthesized using the simultaneous chain- and step-growth radical polymerization of t-butyl acrylate and 3-butenyl 2-chloropropionate, followed by the transformation of t-butyl groups into primary ammonium salts. We prepared a series of copolymers with different structural features in terms of molecular weight, monomer composition, amine functionality, and side chain structures to examine the effect of polymer properties on their antimicrobial and hemolytic activities. The acrylate copolymers containing primary amine side chains displayed moderate antimicrobial activity against E. coli but were relatively hemolytic. The acrylate copolymer with quaternary ammonium groups and the acrylamide copolymers showed low or no antimicrobial and hemolytic activities. An acrylate copolymer with primary amine side chains degraded to lower molecular weight oligomers with lower antimicrobial activity in aqueous solution. This degradation was due to amidation of the ester groups of the polymer chains by the nucleophilic addition of primary amine groups in the side chains resulting in cleavage of the polymer main chain. The degradation mechanism was studied in detail by model reactions between amine compounds and precursor copolymers.  相似文献   

7.
Cyclization of bioactive peptides, utilizing functional groups serving as natural pharmacophors, is often accompanied with loss of activity. The backbone cyclization approach was developed to overcome this limitation and enhance pharmacological properties. Backbone cyclic peptides are prepared by the incorporation of special building units, capable of forming amide, disulfide and coordinative bonds. Urea bridge is often used for the preparation of cyclic peptides by connecting two amine functionalized side chains. Here we present urea backbone cyclization as an additional method for the preparation of backbone cyclic peptide libraries. A straightforward method for the synthesis of crystalline Fmoc‐Nα [ω‐amino(Alloc)‐alkyl] glycine building units is presented. A set of urea backbone cyclic Glycogen Synthase Kinase 3 analogs was prepared and assessed for protein kinase B inhibition as anticancer leads. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.  相似文献   

9.
A tripodal bifunctional chelator for gallium has been prepared with a chelation core consisting of three thiols and a tertiary amine. The synthesis proceeds in 13 steps with an overall yield of 22%. An aromatic amine is available for conjugation to peptides through carbodiimide coupling. Gallium(III) complexes were readily prepared from both the bifunctional chelator and a phenylalanine-conjugated system. These complexes underwent stability evaluation and were found to be stable to ligand exchange and enzymatic hydrolysis. This bifunctional chelator appears to be suitable for conjugation to peptides for the preparation of gallium radiopharmaceuticals.  相似文献   

10.
Peptidomimetics of the major histocompatibility complex (MHC) class I-restricted ovalbumin-derived T cell epitope SIINFEKL were generated by replacing parts of the peptide backbone by a poly-N-acylated amine (PAA) backbone with aromatic, heteroaromatic, and pseudoaromatic side chains that branch off of the main chain at the amine nitrogen. The structure of the PAAs was designed to position this side chain in the central epitope anchor pocket of the MHC molecule. A number of biologically active PAAs were found that induced cytolysis by the mouse cytotoxic T cell clone 4G3. Competition experiments with independent peptides that are known to bind to the restricting MHC molecule H-2K(b) suggest that the PAAs are bound by the MHC molecules at the same site as conventional peptide epitopes. The PAAs were active also in vivo and induced primary cytotoxic T cell responses in mice.  相似文献   

11.
Y Li  F Zhang  Y Xu  K Matsumura  Z Han  L Liu  W Lin  Y Jia  PY Qian 《Biofouling》2012,28(8):857-864
A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.  相似文献   

12.
A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.  相似文献   

13.
Orthogonal protection of amino acid side chains in solid phase peptide synthesis allows for selective deprotection of side chains and the formation of cyclic peptides on resin. Cyclizations are useful as they may improve the activity of the peptide or improve the metabolic stability of peptides in vivo. One cyclization method often used is the formation of a lactam bridge between an amine and a carboxylic acid. It is desirable to perform the cyclization on resin as opposed to in solution to avoid unwanted side reactions; therefore, a common strategy is to use –Alloc and –OAllyl protecting groups as they are compatible with Fmoc solid phase peptide synthesis conditions. Alloc and –OAllyl may be removed using Pd(PPh3)4 and phenylsilane in DMF. This method can be problematic as the reaction is most often performed at room temperature under argon gas. It is not usually done at higher temperatures because of the fear of poisoning the palladium catalyst. As a result, the reaction is long and reagent–intensive. Herein, we report the development of a method in which the –Alloc/–OAllyl groups are removed using a microwave synthesizer under atmospheric conditions. The reaction is much faster, allowing for the removal of the protecting groups before the catalyst is oxidized, as well as being less reagent–intensive. This method of deprotection was tested using a variety of amino acid sequences and side chain protecting groups, and it was found that after two 5‐min deprotections at 38°C, all –Alloc and –OAllyl groups were removed with >98% purity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The contribution of amino acid side chains to the recognition of DNA by peptides or proteins is evaluated by substituting single nucleobases of a DNA double strand by amino acid side chains. C-nucleosides with the side chains of phenylalanine and asparagine were synthesized and incorporated in DNA. This modification should allow to keep the double strand conformation. Hydrogen bonds, pi-pi-interactions and solvation have an influence on the double strand stability.  相似文献   

15.
In this study we compare the ability of various amino acids to protect small unilamellar vesicles against damage during freeze/thaw. Liposomes were composed of 75% palmitoyloleoyl phosphatidylcholine and 25% phosphatidylserine. Damage to liposomes frozen in liquid nitrogen and thawed at 20 degrees C was assessed by resonance energy transfer. Cryoprotection by numerous amino acids was compared in the presence and absence of 350 mM NaCl. The majority of amino acids with hydrocarbon side chains increased membrane damage during freeze/thaw regardless of the presence of salt. However, amino acids with hydrocarbon side chains of less than three carbons long, e.g. glycine, alanine, and 2-aminobutyric acid, were cryoprotective only in the presence of salt. We suggest that NaCl selectively increases the solubility of such amino acids, allowing them to act as cryoprotectants. In contrast, amino acids with side chains containing charged amine groups were cryoprotective regardless of the presence of salt. The degree of charge on the second amine group is shown to be important for cryoprotection by these molecules. We present evidence that suggests an interaction between the positively charged, second amine group of the amino acid, and the negatively charged phospholipid headgroup.  相似文献   

16.
Kovacs JM  Mant CT  Hodges RS 《Biopolymers》2006,84(3):283-297
Understanding the hydrophilicity/hydrophobicity of amino acid side chains in peptides/proteins is one the most important aspects of biology. Though many hydrophilicity/hydrophobicity scales have been generated, an "intrinsic" scale has yet to be achieved. "Intrinsic" implies the maximum possible hydrophilicity/hydrophobicity of side chains in the absence of nearest-neighbor or conformational effects that would decrease the full expression of the side-chain hydrophilicity/hydrophobicity when the side chain is in a polypeptide chain. Such a scale is the fundamental starting point for determining the parameters that affect side-chain hydrophobicity and for quantifying such effects in peptides and proteins. A 10-residue peptide sequence, Ac-X-G-A-K-G-A-G-V-G-L-amide, was designed to enable the determination of the intrinsic values, where position X was substituted by all 20 naturally occurring amino acids and norvaline, norleucine, and ornithine. The coefficients were determined by reversed-phase high-performance liquid chromatography using six different mobile phase conditions involving different pH values (2, 5, and 7), ion-pairing reagents, and the presence and absence of different salts. The results show that the intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides (proteins) is independent of pH, buffer conditions, or whether C(8) or C(18) reversed-phase columns were used for 17 side chains (Gly, Ala, Cys, Pro, Val, nVal, Leu, nLeu, Ile, Met, Tyr, Phe, Trp, Ser, Thr, Asn, and Gln) and dependent on pH and buffer conditions, including the type of salt or ion-pairing reagent for potentially charged side chains (Orn, Lys, His, Arg, Asp, and Glu).  相似文献   

17.
A monoclonal antibody (ID5) raised against the synthetic tetradecapeptide corresponding to the C-terminal region of detyrosinated alpha-tubulin showed an unexpected cross-reactivity with beta-tubulin from pig brain tissue. The specificity and the minimal epitope requirements of ID5 were characterized by competitive enzyme-linked immunosorbent assay (ELISA) and spot blots using a series of synthetic peptides and the natural peptides of beta-tubulin and detyrosinated alpha-tubulin from brain. The epitope of ID5 is comprised of the carboxyterminal sequence -XEE carrying the terminal alpha-carboxylate group with X being a variable residue. All linkages in the epitope involve alpha-peptide bonds. This epitope is provided by the detyrosinated alpha-tubulin main chain and the polyglutamyl side chains of both brain alpha- and beta-tubulins. Affinity purification of beta-tubulin peptides and mass spectrometric characterization reveal that peptides carrying three to nine glutamyl residues in the side chain are recognized by ID5. These results show that except for the first gamma-peptide linkage the alpha-peptide bond is the preferred linkage type in the tubulin polyglutamyl side chains.  相似文献   

18.
The positively charged side chains of cationic antimicrobial peptides are generally thought to provide the initial long-range electrostatic attractive forces that guide them towards the negatively charged bacterial membranes. Peptide analogs were designed to examine the role of the four Arg side chains in the cathelicidin peptide tritrpticin (VRRFPWWWPFLRR). The analogs include several noncoded Arg and Lys derivatives that offer small variations in side chain length and methylation state. The peptides were tested for bactericidal and hemolytic activities, and their membrane insertion and permeabilization properties were characterized by leakage assays and fluorescence spectroscopy. A net charge of +5 for most of the analogs maintains their high antimicrobial activity and directs them towards preferential insertion into model bacterial membrane systems with a similar extent of burial of the Trp side chains. However the peptides exhibit significant functional differences. Analogs with methylated cationic side chains cause lower levels of membrane leakage and are associated with lower hemolytic activities, making them potentially attractive pharmaceutical candidates. Analogs containing the Arg guanidinium groups cause more membrane disruption than those containing the Lys amino groups. Peptides in the latter group with shorter side chains have increased membrane activity and conversely, elongating the Arg residue causes slightly higher membrane activity. Altogether, the potential for strong hydrogen bonding between the four positive Arg side chains with the phospholipid head groups seems to be a determinant for the membrane disruptive properties of tritrpticin and many related cationic antimicrobial peptides.  相似文献   

19.
The stabilisation of different G-quadruplex intra- and intermolecular structures by a number of perylene derivatives characterised by side chains ending with linear or cyclic amines was investigated by electrophoretic (EMSA) and spectroscopic (CD) techniques. The G-rich sequences included the biologically relevant human telomeric TTAGGG runs and the NHE region of the c-myc oncogene. The test compounds could be subdivided into two families: derivatives carrying a cyclic amine in the side chains, which show a reduced binding to the G-quadruplex form, and linear amine congeners, exhibiting enhanced affinity. The latter efficiently induce pairing of multiple DNA chains, while the former are not able to overcome the original folding of the nucleic acid sequence which is preserved in the complex. Remarkably, addition of the perylenes to G-rich sequences paired in a double helical form results in G-quadruplex induction by weak binders only. This is likely related to the ability of strong G-quadruplex binders, but not of weak G-quadruplex binders, to efficiently intercalate into the double-stranded arrangement, which becomes stabilised and is not prone to undergo denaturation and subsequent G-quadruplex folding essentially for kinetic reasons. Hence, two apparently conflicting requirements emerge from this work. In fact, linear alkylamino terminals in the perylene side chains are capable of strong and selective G-quadruplex recognition, but only cyclic amine end groups favour duplex-quadruplex transitions that are likely crucial to produce biological and pharmacological effects in living systems.  相似文献   

20.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号