首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies of plant protoplasts using both fluorescent dyes and electron dense probes have demonstrated endocytosis in plants. Ultrastructural work with soybean protoplasts using cationized ferritin (CF) revealed an endocytotic pathway from coated pits at the plasma membrane to coated vesicles, the partially coated reticulum, Golgi bodies, multivesicular bodies and finally the vacuole. Endocytosis may be responsible for membrane retrieval from the cell surface or degradation of elicitors or toxins during host-pathogen interactions. Immunofluorescence studies of dividing plant protoplasts have provided new information about the preprophase band (PPB) of microtubules and the shape of spindles. Studies of PPBs in soybean protoplast cultures permitted detailed examination of PPB development and an assessment of the usefulness of the PPB index for identifying morphogenic cultures. In multinucleate protoplasts the size and number of PPBs were apparently not controlled by nuclear number. Research with conifer protoplasts resulted in the discovery of new features of gymnosperm spindles.  相似文献   

2.
Cholesterol is an important constituent of cellular membranes playing a fundamental role in many biological processes. This sterol affects membrane permeability, lateral lipid organization, signal transduction and membrane trafficking. Intracellular sterol transport modes and pathways as well as the regulation of sterol metabolism and disposition in various tissues are areas of intense research. Progress is intimately linked to development and use of appropriate analogs, which closely mimic the properties of cholesterol while allowing to be detected by spectroscopic or microscopic methods. This review provides an overview of various fluorescent sterols used in membrane biophysics and cell biology including analogs of cholesterol and cholesteryl esters. Attention is paid to the natural fluorescent sterol dehydroergosterol (DHE). A survey of the many applications of DHE in biological research is presented. Special emphasis is on recent developments in fluorescence microscopy instrumentation to visualize DHE as an intrinsically fluorescent analog of cholesterol in living cells.  相似文献   

3.
Proteomic tools for cell biology   总被引:2,自引:0,他引:2  
Acquisition of large bodies of genomic sequence is facilitating the use of global techniques to assay cellular function. DNA microarrays have enabled the measurement of global mRNA levels and are able to detect changes in gene expression between different cellular states. Since much of the regulation of physiolgical processes happens post-translationally, measuring only the mRNA levels gives an incomplete picture. Strategies to assay global expression, localization, or interaction of proteins fall into the emerging field of proteomics, with various combinations of techniques being utilized to separate and identify proteins. In this review, we will present a general overview of the currently available proteomic tools and then give examples of how these tools are being utilized to answer questions in cell biology.  相似文献   

4.
A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.  相似文献   

5.
During the last years the great importance of RNA for regulating gene expression in all organisms has become obvious. Consequently, several recent approaches aim to utilize the outstanding chemical properties of RNA to develop artificial RNA regulators for conditional gene expression systems. A combination of rational design, in vitro selection and in vivo screening systems has been used to create a versatile set of RNA based molecular switches. These tools rely on diverse mechanisms and exhibit activity in several organisms. In this review, we summarize recent developments in the application of engineered riboswitches for gene regulation in vivo.  相似文献   

6.
Chemical genetics: tailoring tools for cell biology   总被引:3,自引:0,他引:3  
Chemical genetics is a research approach that uses small molecules as probes to study protein functions in cells or whole organisms. Here, I review the parallels between classical genetic and chemical-genetic approaches and discuss the merits of small molecules to dissect dynamic cellular processes. I then consider the pros and cons of different screening approaches and specify strategies aimed at identifying and validating cellular target proteins. Finally, I highlight the impact of chemical genetics on our current understanding of cell biology and its potential for the future.  相似文献   

7.
Retrotransposons are mobile genetic elements that accomplish transposition via an RNA intermediate that is reverse transcribed before integration into a new location within the host genome. They are ubiquitous in eukaryotic organisms and constitute a major portion of the nuclear genome (often more than half of the total DNA) in plants. Furthermore, they are dispersed as interspersed repetitive sequences throughout most of the length of all host chromosomes. These unique properties of retrotransposons have been exploited as genetic tools for plant genome analysis. Major applications are in determining phylogeny and genetic diversity and in the functional analyses of genes in plants. Here, recent advances in molecular markers, gene tagging and functional genomics technologies using plant retrotransposons are described.  相似文献   

8.
9.
10.
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

11.
Automatic characterization of fluorescent labeling in intact mammalian tissues remains a challenge due to the lack of quantifying techniques capable of segregating densely packed nuclei and intricate tissue patterns. Here, we describe a powerful deep learning-based approach that couples remarkably precise nuclear segmentation with quantitation of fluorescent labeling intensity within segmented nuclei, and then apply it to the analysis of cell cycle dependent protein concentration in mouse tissues using 2D fluorescent still images. First, several existing deep learning-based methods were evaluated to accurately segment nuclei using different imaging modalities with a small training dataset. Next, we developed a deep learning-based approach to identify and measure fluorescent labels within segmented nuclei, and created an ImageJ plugin to allow for efficient manual correction of nuclear segmentation and label identification. Lastly, using fluorescence intensity as a readout for protein concentration, a three-step global estimation method was applied to the characterization of the cell cycle dependent expression of E2F proteins in the developing mouse intestine.  相似文献   

12.
13.
Modified oligonucleotides bearing 2'-reactive groups or 2'-conjugated molecules have found wide application as structural tools in molecular biology. Of principal interest has been the use of 2'-reactive oligonucleotides for cross-linking with biomolecules and of 2'-conjugated oligonucleotides in hybridization assays. In this review we compare a range of electrophilic, nucleophilic and photoreactive groups for cross-linking and conjugation studies.  相似文献   

14.
Small G proteins belong to a superfamily of GTPases related to the protooncogene ras, and function as master control elements for a range of cellular functions. This ability is related to their low rate of substrate turnover; GTPases catalyse the conversion of GTP to GDP, but with a rate in the order of one substrate per second, orders of magnitude slower than 'good' enzyme catalysis, but placing the reaction into the temporal frame of many cellular processes including signal transduction, cytoskeletal reorganization and vesicle trafficking. In this article, Mark Field, Bassam Ali and Helen Field describe some recent advances in G-protein studies in the parasite field, concentrating on the protozoan parasites. Because of their numerous roles in cell biology, understanding parasite G proteins has great potential for increasing our knowledge of parasite cellular physiology, as well as providing important inroads into vital processes for potential therapeutic exploitation.  相似文献   

15.
Lipophilic phosphonium cations were first used to investigate mitochondrial biology by Vladimir Skulachev and colleagues in the late 1960s. Since then, these molecules have become important tools for exploring mitochondrial bioenergetics and free radical biology. Here we review why these molecules are useful in mitochondrial research and outline some of the ways in which they are now being utilized.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 273–283.Original Russian Text Copyright ¢ 2005 by Ross, Kelso, Blaikie, James, Cochemé, Filipovska, Da Ros, Hurd, Smith, Murphy.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

16.
The highly regulated structural components of the plant cell form the basis of its function. It is becoming increasingly recognized that cellular components are ordered into regulatory units ranging from the multienzyme complexes that allow metabolic channeling during primary metabolism to the "transducon" complexes of signal transduction elements that allow for the highly efficient transfer of information within the cell. Against this structural background the highly dynamic processes regulating cell function are played out. Recent technological advances in three areas have driven our understanding of the complexities of the structural and functional dynamics of the plant cell. First, microscope and digital camera technology has seen not only improvements in the resolution of the optics and sensitivity of detectors, but also the development of novel microscopy applications such as confocal and multiphoton microscopy. These technologies are allowing cell biologists to image the dynamics of living cells with unparalleled three-dimensional resolution. The second advance has been in the availability of increasingly powerful and affordable computers. The computer control/analysis required for many of the new microscopy techniques was simply unavailable until recently. Third, there have been dramatic advances in the available probes to use with these new microscopy approaches. Thus the plant cell biologist now has available a vast array of fluorescent probes that will report cell parameters as diverse as the pH of the cytosol, the oxygen level in a tissue, or the dynamics of the cytoskeleton. The combination of these new approaches has led to an increasingly detailed picture of how plant cells regulate their activities.  相似文献   

17.
Using a high precision image scanner and a PDP-8/F minicomputer, we have developed a program system for interactive measurements on microscopic images. By giving simple keyboard commands, the operator can run the image scanner and manipulate the digitized images. The interface between the operator and the microscope-computer system is a Tektronix 4010 graphic terminal. The system allows objects to be isolated and parameters to be calculated from each object, e.g., parameters characterizing shape of the object, irregularity in light transmission over the object, area, integrated light transmission, etc. Objects are isolated and parameters are calculated under complete operator control using interactive computer graphics technique. Calculated parameters may be stored in dedicated data records, which are stored in files for later statistical analysis. The system also includes a statistical evaluation part. Technically, the system consists of a command scanner, which translates commands into internal representation, a parser, which checks the syntax of the commands, and an interpreter, which executes the commands. The system is designed so that new commands can be added easily.  相似文献   

18.
19.
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein–lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

20.
Prion diseases are zoonotic infectious diseases commonly transmissible among animals via prion infections with an accompanying deficiency of cellular prion protein (PrP(C)) and accumulation of an abnormal isoform of prion protein (PrP(Sc)), which are observed in neurons in the event of injury and disease. To understand the role of PrP(C) in the neuron in health and diseases, we have established an immortalized neuronal cell line HpL3-4 from primary hippocampal cells of prion protein (PrP) gene-deficient mice by using a retroviral vector encoding Simian Virus 40 Large T antigen (SV40 LTag). The HpL3-4 cells exhibit cell-type-specific proteins for the neuronal precursor lineage. Recently, this group and other groups have established PrP-deficient cell lines from many kinds of cell types including glia, fibroblasts and neuronal cells, which will have a broad range of applications in prion biology. In this review, we focus on recently obtained information about PrP functions and possible studies on prion infections using the PrPdeficient cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号