首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Mutant mice lacking D-amino-acid oxidase activity were examined as to whether they possessed the enzyme protein. 2. Immunoblotting using an antibody against hog kidney D-amino-acid oxidase showed that kidney homogenates of the mutant mice as well as that of the normal mice had proteins reactive to the antibody. 3. Peroxisomal proteins of the kidney cells of the mutant mice were not different from those of the normal mice. 4. The peroxisomes of the mutant mice possessed a protein reactive to the antibody in the immunoblotting whose size was the same as the D-amino-acid oxidase protein present in the peroxisomes of the normal mice. 5. These results suggest that the mutant mice synthesize the D-amino-acid oxidase protein and integrate it into peroxisomes, though it is a nonfunctional enzyme.  相似文献   

2.
The presence of arginine in the active center of D-amino-acid oxidase is well documented although its role has been differently interpreted as being part of the substrate-binding site or the positively charged residue near the N1-C2 = O locus of the flavin coenzyme. To have a better insight into the role of the guanidinium group in D-amino-acid oxidase we have carried out inactivation studies using phenylglyoxal as an arginine-directed reagent. Loss of catalytic activity followed pseudo-first-order kinetics for the apoprotein whereas the holoenzyme showed a biphasic inactivation pattern. Benzoate had no effect on holoenzyme inactivation by phenylglyoxal and the coenzyme analog 8-mercapto-FAD did not provide any additional protection in comparison to the native coenzyme. Spectroscopic experiments indicated that the modified protein is unable to undergo catalysis owing to the loss of coenzyme-binding ability. Analyses of time-dependent activity loss versus arginine modification or [14C]phenylglyoxal incorporation showed the presence of one arginine essential for catalysis. The protection exerted by the coenzyme is consistent with the involvement of an active-site arginine in the correct binding of FAD to the protein moiety. Comparative analyses of CNBr fragments obtained from apoenzyme, holoenzyme and the 8-mercapto derivative of D-amino-acid oxidase after reaction with phenylglyoxal did not provide unequivocal identification of the essential arginine residue within the primary structure of the enzyme. However, they suggest that it might be localized in the N-terminal portion of the polypeptide chain and point to a role of phenylglyoxal-modifiable arginine in binding to the adenylate/pyrophosphate moiety of the flavin coenzyme.  相似文献   

3.
D-amino-acid oxidase (EC 1.4.3.3) was purified about 1480-fold from the yeast Candida guilliermondii using chromatofocusing method. The purification procedure gave an enzyme preparation which is greater than 90% homogenous on SDS-polyacrylamide gels with a specific activity of 11.54 U/mg at 30°C with D-proline as substrate with the yield of total activity 9.3%. The molecular weights of subunit and native enzyme were determined to be 38.4 and 78.6 kDa by SDS-polyacrylamide gel electrophoresis and gel-filtration, respectively, suggesting that the native enzyme exists as a homodimer. A single molecular form with an isoelectric point of 6.85 was detected in analytical isoelectrofocusing. The optimum pH and temperature were 8.0 and 33°C. An enzyme shows stability in the pH range from 7.4 to 9.0 and at the temperature no higher than 38°C. Activation energy for D-amino-acid oxidase reaction was calculated to be 60 kJ/mol at 30°C. The strict D-isomer specificity of the enzyme is confirmed, since no reaction could be detected with L-amino acids, and a large number of D-amino acids could be substrates for this enzyme. K m and V max values were determined for D-proline and D-alanine, which, among 22 tested, were the best substrates of the enzyme. D-amino-acid oxidase from the yeast C. guilliermondii is a flavoprotein oxidase in which the prosthetic group is tightly, but not covalently, bound FAD. The enzyme is completely inhibited by sodium benzoate, SH-oxidizing agents, but not by sodium azide, toluene or chloroform.  相似文献   

4.
Here we report the cDNA-deduced amino-acid sequence of L-amino-acid oxidase (LAAO) from the Malayan pit viper Calloselasma rhodostoma, which shows 83% identity to LAAOs from the Eastern and Western diamondback rattlesnake (Crotalus adamanteus and Crotalus atrox, respectively). Phylogenetic comparison of the FAD-dependent ophidian LAAOs to FAD-dependent oxidases such as monoamine oxidases, D-amino-acid oxidases and tryptophan 2-monooxygenases reveals only distant relationships. Nevertheless, all LAAOs share a highly conserved dinucleotide-binding fold with monoamine oxidases, tryptophan 2-monooxygenases and various other proteins that also may have a requirement for FAD. In order to characterize Ca. rhodostoma LAAO biochemically, the enzyme was purified from snake venom to apparent homogeneity. It was found that the enzyme undergoes inactivation by either freezing or increasing the pH to above neutrality. Both inactivation processes are fully reversible and are associated with changes in the UV/visible range of the flavin absorbance spectrum. In addition, the spectral characteristics of the freeze-and pH-induced inactivated enzyme are the same, indicating that the flavin environments are similar in the two inactive conformational forms. Monovalent anions, such as Cl(-), prevent pH-induced inactivation. LAAO exhibits typical flavoprotein oxidase properties, such as thermodynamic stabilization of the red flavin semiquinone radical and formation of a sulfite adduct. The latter complex as well as the complex with the competitive substrate inhibitor, anthranilate, were only formed with the active form of the enzyme indicating diminished accessibility of the flavin binding site in the inactive form(s) of the enzyme.  相似文献   

5.
The peroxisomal acyl-CoA oxidase has been purified from extracts of the yeast Candida tropicalis grown with alkanes as the principal energy source. The enzyme has a molecular weight of 552,000 and a subunit molecular weight of 72,100. Using an experimentally determined molar extinction coefficient for the enzyme-bound flavin, a minimum molecular weight of 146,700 was determined. Based on these data, the oxidase contains eight perhaps identical subunits and four equivalents of FAD. No other β-oxidation enzyme activities are detected in purified preparations of the oxidase. The oxidase flavin does not react with sulfite to form an N(5) flavin-sulfite complex. Photochemical reduction of the oxidase flavin yields a red semiquinone; however, the yield of semiquinone is strongly pH dependent. The yield of semiquinone is significantly reduced below pH 7.5. The flavin semiquinone can be further reduced to the hydroquinone. The behavior of the oxidase flavin during photoreduction and its reactivity toward sulfite are interpreted to reflect the interaction in the N(1)-C(2)O region of the flavin with a group on the protein which acts as a hydrogen-bond acceptor. Like the acyl-CoA dehydrogenases which catalyze the same transformation of acyl-CoA substrates, the oxidase is inactivated by the acetylenic substrate analog, 3-octynoyl-CoA, which acts as an active site-directed inhibitor.  相似文献   

6.
Cholesterol oxidase [EC 1.1.3.6] from Schizophyllum commune was purified by an affinity chromatography using 3-O-succinylcholesterol-ethylenediamine (3-cholesteryl-3-[2-aminoethylamido]propionate) Sepharose gels. The resulting preparation was homogeneous as judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 53,000 by SDS-gel electrophoresis and 46,000 by sedimentation equilibrium. The enzyme contained 483 amino acid residues as calculated on the basis of the molecular weight of 53,000. The enzyme consumed 60 mumol of O2/min per mg of protein with 1.3 mM cholesterol at 37 degrees C. The enzyme showed the highest activity with cholesterol; 3 beta-hydroxysteroids, such as dehydroepiandrosterone, pregnenolone, and lanosterol, were also oxidized at slower rates. Ergosterol was not oxidized by the enzyme. The Km for cholesterol was 0.33 mM and the optimal pH was 5.0. The enzyme is a flavoprotein which shows a visible absorption spectrum having peaks at 353 nm and 455 nm in 0.1 M acetate buffer, pH 4.0. The spectrum was characterized by the hypsochromic shift of the second absorption peak of the bound flavin. The bound flavin was reduced on anaerobic addition of a model substrate, dehydroepiandrosterone. Neither acid not heat treatment released the flavin coenzyme from the enzyme protein. The flavin of the enzyme could be easily released from the enzyme protein in acid-soluble form as flavin peptides when the enzyme protein was digested with trypsin plus chymotrypsin. The mobilities of the aminoacyl flavin after hydrolysis of the flavin peptides on thin layer chromatography and high voltage electrophoresis differed from those of free FAD, FMN, and riboflavin. A pKa value of 5.1 was obtained from pH-dependent fluorescence quenching process of the aminoacyl flavin. AMP was detected by hydrolysis of the flavin peptides with nucleotide pyrophosphatase. The results indicate strongly that cholesterol oxidase from Schizophyllum commune contains FAD as the prothetic group, which is covalently linked to the enzyme protein. The properties of the bound FAD were comparable to those of N (1)-histidyl FAD.  相似文献   

7.
Immunochemical properties of D-amino-acid oxidase   总被引:1,自引:0,他引:1  
Antiserum against homogeneous hog kidney D-amino-acid oxidase (D-amino-acid: oxygen oxidoreductase (deaminating), EC 1.4.3.3) was elicited in rabbits, and monospecific antibodies were prepared by affinity chromatography. The antibodies inhibited up to 90% of hog D-amino-acid oxidase activity, and 100% of the enzyme could be immunoprecipitated. The antibodies inhibited both holoenzyme and reconstituted apoprotein to a similar degree, indicating that they did not interfere with the FAD-binding site of the protein. The antibodies inhibited D-amino-acid oxidase activity from other mammalian species to a similar degree, while the enzyme activities from birds, amphibians, fishes and yeast were inhibited and immunoprecipitated to lower extents. In immunoblotting experiments, after SDS-polyacrylamide gel electrophoresis, the antibodies recognized a single band of about 40 kDa in all the species analyzed, and the entity of the signal was inversely related to the phylogenetic distance from mammals. The antibodies did not inhibit D-alanine dehydrogenase activity from Escherichia coli, but gave positive bands in immunoblotting.  相似文献   

8.
H Ohama  N Sugiura  F Tanaka  K Yagi 《Biochemistry》1977,16(1):126-131
The absorption spectrum of D-amino-acid oxidase (D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3) was significantly perturbed by various alcohols; typical fine structures were observed in the visible absorption bands, accompanied by blue shifts of the peaks. Both fluorescence intensity and fluorescence polarization were increased upon the addition of alcohols, indicating that the coenzyme is not liberated from the apoenzyme but the hydrophobicity of the environment of the enzyme-bound flavin is increased. Upon the addition of alcohols, the circular dichroism of the enzyme was markedly modified in the visible and near-ultraviolet regions, while that of the apoenzyme in the near- and far-ultraviolet regions was scarcely modified, indicating a change in the interaction between the flavin coenzyme and protein. Both the apparent maximal velocity and the apparent Michaelis constant of the enzyme were increased by the addition of alcohols. The presence of alcohols tends to dissociate the dimer of this enzyme into the monomer, but the dissociation does not fully explain the increase in the maximal velocity of the enzyme by alcohols, because the increase in the maximal velocity caused by alcohols is larger than that expected from the dissociation. Since the rate of formation of the purple intermediate was decreased by alcohols in both the dimer and the monomer, the increase in the maximal velocity could be ascribed to an increase in the rate of dissociation of the enzyme-product complex. This increase could be ascribed to the protein conformational change, which is probably provoked by combination of alcohols with the enzyme at a locus other than that for substrate binding.  相似文献   

9.
Ghanem M  Gadda G 《Biochemistry》2006,45(10):3437-3447
A protein positive charge near the flavin N(1) locus is a distinguishing feature of most flavoprotein oxidases, with mechanistic implications for the modulation of flavin reactivity. A recent study showed that in the active site of choline oxidase the protein positive charge is provided by His(466). Here, we have reversed the charge by substitution with aspartate (CHO-H466D) and, for the first time, characterized a flavoprotein oxidase with a negative charge near the flavin N(1) locus. CHO-H466D formed a stable complex with choline but lost the ability to oxidize the substrate. In contrast to the wild-type enzyme, which binds FAD covalently in a 1:1 ratio, CHO-H466D contained approximately 0.3 FAD per protein, of which 75% was not covalently bound to the enzyme. Anaerobic reduction of CHO-H466D resulted in the formation of a neutral hydroquinone, with no stabilization of the flavin semiquinone; in contrast, the anionic semiquinone and hydroquinone species were observed with the wild type and a H466A variant of the enzyme. The midpoint reduction potential for the oxidized-reduced couple in CHO-H466D was approximately 160 mV lower than that of the wild-type enzyme. Finally, CHO-H466D lost the ability to form complexes with glycine betaine or sulfite. Thus, with a reversal of the protein charge near the FAD N(1) locus, choline oxidase lost the ability to stabilize negative charges in the active site, irrespective of whether they develop on the flavin or are borne on ligands, resulting in defective flavinylation of the protein, the decreased electrophilicity of the flavin, and the consequent loss of catalytic activity.  相似文献   

10.
l-Galactonolactone oxidase is believed to catalyze the last step of l-ascorbic acid biosynthesis in yeast. A highly purified preparation of this enzyme from baker's yeast was obtained by a seven-step procedure. The molecular weight of the purified enzyme was estimated to be 290,000 by gel filtration, while the dissociated enzyme possessed a molecular weight of 56,000, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzes the reaction, l-galactono-γ-lactone + O2 → l-ascorbic acid + H2O2. l-Gulono- and d-altrono-γ-lactone also serve as substrates. The enzyme was found to contain a flavin which is covalently bound to the enzyme protein. By comparing the properties of this enzyme with those of isofunctional enzymes of higher plants and animals, it became evident that the yeast enzyme is more like the l-gulonolactone oxidase (EC 1.1.3.8) of animals than the l-galactonolactone dehydrogenase (EC 1.3.2.3) of higher plants. Since phylogenetically lower animals are reported to lack l-gulonolactone oxidase, the finding of a similar enzyme in yeast is of great interest.  相似文献   

11.
D-aspartate oxidase from beef kidney. Purification and properties   总被引:1,自引:0,他引:1  
The flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been purified to homogeneity from beef kidney cortex. The protein is a monomer with a molecular weight of 39,000 containing 1 molecule of flavin. The enzyme as isolated is a mixture of a major active form containing FAD and a minor inactive form containing 6-hydroxy-flavin adenine dinucleotide (6-OH-FAD). The absorption and fluorescence spectral properties of the two forms have been studied separately after reconstitution of the apoprotein with FAD or 6-OH-FAD, respectively. FAD-reconstituted D-aspartate oxidase has flavin fluorescence, shows characteristic spectral perturbation upon binding of the competitive inhibitor tartaric acid, is promptly reduced by D-aspartic acid under anaerobiosis, reacts with sulfite to form a reversible covalent adduct, stabilizes the red anionic form of the flavin semiquinone upon photoreduction, and yields the 3,4-dihydro-FAD-form after reduction with borohydride. A Kd of 5 X 10(-8) M was calculated for the binding of FAD to the apoprotein. 6-OH-FAD-reconstituted D-aspartate oxidase has no flavin fluorescence, shows no spectral perturbation in the presence of tartaric acid, is not reduced by D-aspartic acid under anaerobiosis, does not stabilize any semiquinone upon photoreduction, and does not yield the 3,4-dihydro-form of the coenzyme when reduced with borohydride; the enzyme stabilizes the p-quinoid anionic form of 6-OH-FAD and lowers its pKa more than two pH units below the value observed for the free flavin. The general properties of the enzyme thus resemble those of the dehydrogenase/oxidase class of flavoprotein, particularly those of the amino acid oxidases.  相似文献   

12.
The renaturation of free and Sepharose-immobilized D-amino-acid oxidase (D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3), after its denaturation with 6 M guanidine hydrochloride, was investigated. No reactivation, or extremely limited reactivation (less than or equal to 4+), was obtained with the free enzyme, is spite of various attempts including the use of dialysis or buffers containing cofactors, different types of anions, surfactants and low concentrations of denaturing agents. The main obstacle to renaturation appeared to be the interaction among denatured or partially renatured monomers giving rise to inactive aggregates. In contrast, using the immobilized enzyme approach, substantial renaturation (up to 50%) of D-amino-acid oxidase was achieved. The denaturation-renaturation process was followed by monitoring the catalytic activity as well as the intrinsic protein fluorescence. An inverse correlation was found to exist between the degree of matrix activation by CNBr and the yield of enzyme reactivation. The anions of the lyotropic series markedly influenced the reactivation, showing an effectiveness opposite to their salting-out potential (thiocyanate congruent to iodide greater than chloride greater than phosphate congruent to sulphate congruent to citrate). Instead, the anions considerably increased the activity and stability of free and immobilized enzyme, according to their salting-out potential. Immobilized monomers of D-amino-acid oxidase, which in solution undergoes self-association, showed poor capacity to interact with the free enzyme: thus they appear unsuitable for analytical and preparative purposes.  相似文献   

13.
1. Sarcosine was oxidized by D-amino-acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating), EC 1.4.3.3) to yield methylamine and glyoxylic acid. A seriies of N-alkyl glycines were also oxidized by this enzyme. 2. N-Acetyl- and N-Phenylglycine inhibited the oxidase by competing with the substrate, while N-methyl-N-acetylglycine did not bind to the enzyme. This suggests the requirement of at least one unsubstituted hydrogen atom at the amino group ofglycine for binding. 3. The primary step in the reaction was the release of a proton from the substrate, indicating the formation of a substituted imino acid, which was spontaneously hydrolyzed to glyoxylic acid acid and an amine.  相似文献   

14.
Interaction between 1,4-thiazine derivatives and D-amino-acid oxidase   总被引:1,自引:0,他引:1  
Aminoethylcysteine-ketimine (2H-1,4-thiazine-5,6-dihydro-3-carboxylic acid) strongly inhibits D-amino-acid oxidase (D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3). The inhibition is purely competitive (Ki = 3.3 X 10(-7) M). Aminoethylcysteine-ketimine modifies the visible spectrum of the enzyme: the absorption maxima of bound FAD shift from 375-455 nm to 385-445 nm with a definite shoulder at 465 nm; the appearance of a large absorption band centered at 750 nm may be due to a charge-transfer complex formation. The dissociation constant for the aminoethylcysteine-ketimine-enzyme complex, calculated by a photometric procedure (4 X 10(-7) M), is in good agreement with kinetic data. The dicarboxylic analogue of this inhibitor (lanthionine-ketimine) is ineffective in D-amino-acid oxidase inhibition and does not produce any spectral modification of the enzyme. These results confirm structural requirements for D-amino-acid oxidase inhibitor reported by other researchers. Ketimine reduced forms (thiomorpholine-2-carboxylic acid and thiomorpholine-2,6-dicarboxylic acid) are chemically synthesized and checked as D-amino-acid oxidase substrates: only thiomorpholine-2-carboxylic acid is oxidized to aminoethylcysteine-ketimine (Km = 2 X 10(-4) M).  相似文献   

15.
Representative examples of the various classes of flavoproteins have been converted to their apoprotein forms and the native flavin replaced by 8-mercapto-FMN or 8-mercapto-FAD. The spectral and catalytic properties of the modified enzymes are characteristically different from one group to another; the results suggest that flavin interactions at positions N(1) or N(5) of the flavin chromophore have profound influences on the properties of the flavoprotein. 1. The 8-thiolate anion form of 8-mercaptoflavin has an absorption maximum in the region 520 to 550 nm epsilon approximately 30 mM-1 cm-1). This form is retained on binding to flavoproteins whose physiological reactions involve obligatory one-electron transfers (e.g. flavodoxin, NADPH-cytochrome P-450 reductase). In the native form these enzymes stabilize the blue neutral radical of the flavin. A radical form of 8-mercaptoflavin is also stabilized by these proteins. 2. The p-quinoid form of 8-mercaptoflavin has an absorption maximum in the range 560 to 600 nm (epsilon approximately 30 mM-1 cm-1). This form is stabilized on binding to flavoproteins of the dehydrogenase-oxidase class (e.g. glucose oxidase, D-amino acid oxidase, lactate oxidase, Old Yellow Enzyme). These same enzymes in their native flavin form stabilize the red semiquinone, and have a pronounced reactivity with sulfite to form flavin N(5)-sulfite adducts. These properties of the native enzyme, including the ability to react with nitroalkane carbanions, are not exhibited by the 8-mercaptoflavoproteins. 3. A group of flavoenzymes fails to conform strictly to the above classification, exhibiting some properties of both classes. These include the examples of flavoprotein hydroxylases and transhydrogenases studied. 4. The riboflavin-binding protein of hen egg whites binds 8-mercaptoriboflavin preferentially in the unionized state, resulting in a shift in pK from 3.8 with free 8-mercaptoriboflavin to greater than or equal to 9.0 with the protein-bound form.  相似文献   

16.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

17.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

18.
Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His(69) of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 35-fold; the isomerization step of the intermediate 3-ketosteroid to the final product is also preserved. Stabilization of the flavin semiquinone and binding of sulfite are markedly decreased, this correlates with a lower midpoint redox potential (-204 mV compared with -101 mV for wild-type). Reconstitution with 8-chloro-FAD led to a holoenzyme form of H69A cholesterol oxidase with a midpoint redox potential of -160 mV. In this enzyme form, flavin semiquinone is newly stabilized, and a 3.5-fold activity increase is observed, this mimicking the thermodynamic effects induced by the covalent flavin linkage. It is concluded that the flavin 8alpha-linkage to a (N1)histidine is a pivotal factor in the modulation of the redox properties of this cholesterol oxidase to increase its oxidative power.  相似文献   

19.
The redox potentials and pH characteristics of D-amino-acid oxidase (EC 1.4.3.3; DAAO) from the yeast Rhodotorula gracilis and Trigonopsis variabilis were measured in the pH range 6.5-8.5 at 15 degrees C. In the free enzyme form, the anionic red semiquinone is quantitatively formed in both DAAOs, indicating that a two single-electron transfer mechanism is active. The semiquinone species is also thermodynamically stable, as indicated by the large separation of the single-electron transfer potentials. The first electron potential is pH-independent, while the second electron transfer is pH-dependent exhibiting a approximately -60 mV/pH unit slope, consistent with a one-electron/one-proton transfer. In the presence of the substrate analogue benzoate, the two-electron transfer is the thermodynamically favoured process for both DAAOs, with only a quantitative difference in the stabilization of the anionic semiquinone. Clearly binding of the substrate (or substrate analogue) modulates the redox properties of the two enzymes. In both cases, in the presence and absence of benzoate, the slope of Em vs. pH (-30 mV/pH unit) corresponds to an overall two-electron/one-proton transfer in the reduction to yield the anionic reduced flavin. This behaviour is similar to that reported for DAAO from pig kidney. The differences in potentials and the stability of the semiquinone intermediate measured for the three DAAOs probably stem from different isoalloxazine environments. In the case of R. gracilis DAAO, the low stability of the semiquinone form in the DAAO-benzoate complex can be explained by the shift in position of the side chain of Arg285 following substrate analogue binding.  相似文献   

20.
P Marcotte  C Walsh 《Biochemistry》1978,17(26):5613-5619
The nonenzymatic reactions which follow enzymatic oxidation of the gamma-delta acetylenic amino acid propargylglycine (2-amino-4-pentynoate) have been studied. The product which accumulates in solution has been identified as 2-amino-4-hydroxy-2,4-pentadienoate gamma-lactone, formed by intramolecular attack of the carboxylate anion on the electrophilic fourth carbon of 2-iminium-3,4-pentadienoate. This previously unknown substance was characterized by its reactions in acid and base and by its nuclear magnetic resonance spectrum. The lactone is preceded in the pathway by 2-amino-2-penten-4-ynoate, a transient electron-rich species which binds tightly to D-amino-acid oxidase and induces a charge-transfer complex with the electron-deficient bound flavin coenzyme. The aminediene lactone is converted by base treatment to 2-amino-4-keto-2-pentenoate, which is also a strong inhibitor of D-amino-acid oxidase and induces a charge-transfer complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号