首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cui F  Wang Y  Wang J  Wei K  Hu J  Liu F  Wang H  Zhao X  Zhang X  Yang X 《Proteomics》2006,6(2):498-504
Chronic infection of hepatitis virus B (HBV) has been proven to be one of the most important risk factors of hepatocellular carcinoma (HCC). HBx has been shown to function in the viral life cycle and the development of HCC. Recently, we have reported that HBx transgenic mice (p21-HBx), generated by gene knockin, develop HCC at the age of 18 months. To further study the function of HBx during the development of HCC in vivo, we performed proteomic analysis of the transgenic and wild-type control mice. The combination of 2-DE and MALDI-TOF MS revealed that proteasome subunits (PSMA6, PSMB4, PSMC2 and PSMD12) were up-regulated in tumor tissues of the p21-HBx transgenic mice. Cathepsin B, ubiquinol-cytochrome C reductase core protein 1 and an ATP-dependent caseinolytic protease, which were involved in the cellular proteolytic process, were also found increased in tumors. The results were confirmed in tumors of transgenic mice and HCCs of human using RT-PCR. All these results suggested that the strengthened ubiquitin-proteasome and lysosomal pathway might contribute to the development of HBx-related HCC.  相似文献   

3.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

4.
Choi YH  Kim HI  Seong JK  Yu DY  Cho H  Lee MO  Lee JM  Ahn YH  Kim SJ  Park JH 《FEBS letters》2004,557(1-3):73-80
Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.  相似文献   

5.
乙型肝炎病毒X蛋白HBx与肝细胞癌的发生有很高的相关性。PCR扩增并克隆了HBx基因及其失活突变体HBx-M13。构建了HBx基因及HBx-M13在小鼠肝脏的特异性表达载体。为建立转HBx基因及HBx-M13的小鼠动物模型、进一步研究HBx在肝癌发病过程中的分子生物学机理奠定了基础。  相似文献   

6.
Chen J  Siddiqui A 《Journal of virology》2007,81(12):6757-6760
The human hepatitis B virus (HBV) X protein (HBx) plays a crucial role(s) in the viral life cycle and contributes to the onset of hepatocellular carcinoma (HCC). HBx caused the mitochondrial translocation of Raf-1 kinase either alone or in the context of whole-viral-genome transfections. Mitochondrial translocation of Raf-1 is mediated by HBx-induced oxidative stress and was dependent upon the phosphorylation of Raf-1 at the serine338/339 and Y340/341 residues by p21-activated protein kinase 1 and Src kinase, respectively. These studies provide an insight into the mechanisms by which HBV induces intracellular events relevant to liver disease pathogenesis, including HCC.  相似文献   

7.
Chronic hepatitis B (CHB) is associated with the development of hepatocellular carcinoma (HCC). Decoy receptor 3 (DcR3) is a tumor necrosis factor receptor that promotes tumor cell survival by inhibiting apoptosis and interfering with immune surveillance. Previous studies showed that DcR3 was overexpressed in HCC cells and that short hairpin RNA (shDcR3) sensitizes TRAIL-resistant HCC cells. However, the expression of DcR3 during hepatitis B virus (HBV) infection has not been investigated. Here, we demonstrated that DcR3 was overexpressed in CHB patients and that DcR3 upregulation was positively correlated with the HBV DNA load and liver injury (determined by histological activity index, serum alanine aminotransferase level, and aspartate aminotransferase level). We found that hepatitis B virus X protein (HBx) upregulated DcR3 expression in a dose-dependent manner, but this increase was blocked by NF-κB inhibitors. HBx also induced the activation of NF-κB, and the NF-κB subunits p65 and p50 upregulated DcR3 by directly binding to the DcR3 promoters. Inhibition of PI3K significantly downregulated DcR3 and inhibited the binding of NF-κB to the DcR3 promoters. Our results demonstrate that the HBx induced DcR3 expression via the PI3K/NF-κB pathway; this process may contribute to the development of HBV-mediated HCC.  相似文献   

8.
p53 mutations and binding of p53 to hepatitis B virus (HBV) x protein (HBx) have been suggested as alternative mechanisms of development of hepatocellular carcinomas (HCCs) in man, both processes resulting in intracellular accumulation of the protein which is detectable by immunohistochemical approaches. We have examined p53 expression in 149 explanted human livers, including 39 cases infected with HBV and 35 bearing HCC. p53 was demonstrated immunohistochemically in 51% of HCC samples (18/35), localized mainly in fast growing poorly differentiated areas. Accumulation of mutant p53 was verified by immunoprecipitation in most of the positive HCC samples (14/15), implying occurrence of p53 mutations. No cells positive for p53 were found in 354 preneoplastic hepatocellular lesions examined. This indicates that p53 mutation is associated with progression, rather than early development, of HCC in the low-aflatoxin B(1)-exposed region. The intracellular distribution patterns of p53 and HBx were different, with the former within nuclei and the latter confined to cytoplasmic compartment. HBx did not coimmunoprecipitate with p53. These data indicate that p53-HBx binding is infrequent, if it really occurs, in HBV-infected human liver, and that it cannot be a common mechanism of HBV-associated hepatocarcinogenesis. In addition, p53 accumulation was also observed in some parenchymal and ductular (oval) cells in cirrhotic livers and, more frequently, in fulminant hepatitis, being independent of HBx expression, and seemingly associated with the damage and/or regeneration of liver parenchyma, perhaps merely reflecting a cellular stress response.  相似文献   

9.
Deficiency in autophagy, a lysosome-dependent cell degradation pathway, has been associated with a variety of diseases especially cancer. Recently, the activation of autophagy by hepatitis B virus X (HBx) protein, which is implicated in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), has been identified in hepatic cells. However, the underlying mechanism and the relevance of HBx-activated autophagy to the carcinogenesis caused by HBV remain elusive. Here, by transfection of HBV genomic DNA and HBx in hepatic and hepatoma cells, we showed that HBV- or HBx-induced autophagosome formation was accompanied by unchanged MTOR (mechanistic target of rapamycin) activity and decreased degradation of LC3 and SQSTM1/p62, the typical autophagic cargo proteins. Further functional and morphological analysis indicated that HBx dramatically impaired lysosomal acidification leading to a drop in lysosomal degradative capacity and the accumulation of immature lysosomes possibly through interaction with V-ATPase affecting its lysosome targeting. Moreover, clinical specimen test showed increased SQSTM1 and immature lysosomal hydrolase CTSD (cathepsin D) in human liver tissues with chronic HBV infection and HBV-associated liver cancer. These data suggest that a repressive effect of HBx on lysosomal function is responsible for the inhibition of autophagic degradation, and this may be critical to the development of HBV-associated HCC.  相似文献   

10.
Hepatitis viruses and hepatocarcinogenesis   总被引:3,自引:0,他引:3  
Hepatocellular carcinoma (HCC) is among the most frequent malignancies worldwide. Hepatitis viruses, such as the hepatitis B virus (HBV) and hepatitis C virus (HCV) are undoubtedly listed in the etiology of HCC. Studies show that, in the near future, viral hepatitis will carry increasing weight in the etiology of HCC. This review briefly discusses the known carcinogenic effects of HBV and HCV in the light of experimental and human studies. The data show that viral proteins may directly interfere with gene products responsible for cell proliferation and cell growth. Many other signal transduction cascades may be affected as well. Direct integration of HBV viral sequences into the host genome increases the genomic instability. The genomic imbalance allows the development and survival of malignant clones bearing defected genomic information. HBV and HCV infection induces indirect and direct mechanisms through cellular damage, increased regeneration and cell proliferation, therefore enhancing the development of HCC.  相似文献   

11.
12.
The long noncoding RNA growth-arrest specific 5 (GAS5) is a suppressor of many cancers. However, the role and mechanism of action of GAS5 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain unclear. Here, the expression of hepatitis B virus x gene (HBx) mRNA and GAS5 was assessed by qRT–PCR, and western blot analysis was performed to determine the protein expression levels. In addition, the cell viability and invasion of cells were confirmed using  MTT assay and Transwell assay, respectively. The DNA methylation level of GAS5 was measured by methylation-specific PCR. Moreover, RIP assay and RNA pull down assay were carried out to examine the combination of Y-box-binding protein 1 (YBX1) and GAS5. First, our data proved that HBx is increased, while GAS5 is decreased in HCC cell lines. Subsequently, we found that HBx facilitates HCC cell viability and invasion by inhibiting GAS5 expression. Then, we further clarified that HBx induces the DNA methylation of GAS5 by promoting methyltransferase expression, thereby suppressing GAS5 expression. Furthermore, GAS5 binds YBX1 and promotes YBX1 and p21 expression. Finally, the functional analysis revealed that the upregulation of GAS5 could attenuate cell viability and invasion by boosting p21 expression via binding YBX1. Overall, our results demonstrated that HBx promotes HCC progression by inducing GAS5 methylation to reduce its expression. The upregulation of GAS5 suppressed HBV-related HCC by activating YBX1/p21 signaling. Our data provide novel evidence supporting the potential of GAS5 as a treatment target in HBV-related HCC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00645-z.  相似文献   

13.
Hepatocellular carcinoma (HCC) ranks fifth in frequency of cancers worldwide. The main aetiological factor is hepatitis B virus (HBV) although the importance of hepatitis C virus (HCV) is growing. The most important tumour marker for HCC is alpha-fetoprotein (AFP). The common method of screening high risk patients by AFP and ultrasonography has been shown to result in earlier detection and consequently more easily treatable tumours and longer survival. Proposed screening interval varies from once every 3 months to annually to "as indicated' but, most commonly, is once every 6 months. AFP is a fairly specific but insensitive marker for HCC. Sensitivity of HCC detection by blood markers is improved by combining various other markers with AFP. Of the other markers, the newer high sensitivity des-gamma-carboxy-prothrombin (DCP) has been found to be useful. In addition the AFP fractions L3, P4/5 and the +II band are highly specific for HCC. Among routinely assayed tumour markers in the laboratory, CA 125 is more sensitive for HCC than AFP but far less specific. Various other enzymes, isoenzymes, growth factors, adhesion molecules, other proteins such as interleukin-2 receptor (IL-2R), human cervical cancer oncogene protein (HCCR) and glypican-3 (GPC3), p15 and p16 hypermethylation and nitrite/nitrate ratio have been tested; some of these show promise but none is presently in routine use. The value of other newer markers such as the HBx protein that is produced by HBV, and what are thought to be specific proteins and signatures identified by proteomics remain to be determined.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection in vitro and in vivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.  相似文献   

15.
Hepatocellular carcinoma (HCC) is the most important primary hepatic cancer and is a common cancer type worldwide. Many aetiological factors have been related to HCC development, such as liver cirrhosis, hepatitis viruses and alcohol consumption. Inactivation of the p53 tumour suppressor gene is one of the most common abnormalities in many tumours, including HCC. p53 is of crucial importance for the regulation of the cell cycle and the maintenance of genomic integrity. In HCC, hepatitis B and C virus (HBV and HCV) effect carcinogenic pathways, independently leading to anomalies in p53 function. Several authors have reported that some HCV proteins, such as the core, NS5A and NS3 proteins, interact with p53 and prevent its correct function. The mechanisms of action of these HCV proteins in relation to p53 are not completely clear, but they might cause its cytoplasmic retention or accumulation in the perinuclear region where the protein is not functional. The identification of the interactions between p53 and HCV proteins is of great importance for therapeutic strategies aimed at reducing the chronicity and/or carcinogenicity of the virus.  相似文献   

16.
Primary hepatocellular carcinoma (HCC) is one of the most common cancers occurring in human, and there is strong epidemiological evidence suggesting that persistent hepatitis B virus (HBV) infection is the most important risk factor for its development. HBx gene was found to be a transactivator recently. Its continuous expression in hepatocytes may transactivate cellular genes which can play a certain role in development of HCC. The HBx gene fragment was used to construct a recombinant eukaryotic expression vector pCEP4 and introduced into HepG2 cells. The effect of HBx gene on HCC cells growth and its molecular mechanism in HCC cells regulation were investigated.  相似文献   

17.
Chronic hepatitis B virus (HBV) infection is the major risk for hepatocellular carcinomas (HCC). HBV X protein (HBx) and p53 tumor suppressor family interactions may be crucial for HCC induction. We compared p53 and p73 interactions with HBx in normal and HCC tumor cell lines differing in their p53 status. In the latter, HBx was pro-apoptotic but exhibited opposite effects in non-tumor cells. In these normal cells, p53 and p73 were retained in the cytoplasm. In hepatoma cells, however, HBx led to nuclear translocation of p53 and p73, followed by enhanced transactivation of p53-dependent promoters. The nuclear transfer of p53, but not of p73, was abrogated by protein kinase C inhibitor Gö6976. HBx overexpression in HCC cells led to strong p53 phosphorylation at Ser15, but not in non-tumor cells. Our results define ATM kinase as mediator for HBx-induced p53 phosphorylation. While HBx promotes cell death in p53/p73-positive hepatoma cells also in presence of increased levels of the oncogenic ΔTAp73 isoform, it significantly potentiates ΔTAp73-mediated proliferation and malignant transformation of fibroblasts. Our data suggest that prevention of apoptosis in normal cells by HBx through inhibition of pro-apoptotic p53 family members via direct interaction and coaction with anti-apoptotic ΔTAp73 seems to be the key element in the decision in favor of cell survival. The complex cell context-dependent interactions between p53 family members and HBx in the regulation of apoptosis may be essential in HBV-induced HCC and anticancer therapy.  相似文献   

18.
Primary hepatocellular carcinoma (HCC) is one of the most common cancers occurring in human,and there is strong epidemiological evidence suggesting that persistent hepatitis B virus (HBV) infection is the most important risk factor for its development.HBx gene was found to be a transactivator recently.Its continuous expression in hepatocytes may transactivate cellular genes which can play a certain role in development of HCC.The HBx gene fragment was used to construct a recombinant eukaryotic expression vector pCEP4 and introduced into HepG2 cells.The effect of HBx gene on HCC cells growth and its molecular mechanism in HCC cells regulation were investigated.  相似文献   

19.
20.
肝细胞癌 (hepatocellular carcinoma, HCC)是我国最常见的恶性肿瘤之一,而HBV慢性感染是肝癌发生的主要原因.乙型肝炎病毒(HBV)中X基因编码的一种多功能蛋白(HBx),参与众多重要生物学过程的调控,并促进肝细胞癌的发生. 早期研究表明,HBx在HCC发生过程中发挥重要的调控功能,但其确切分子机制尚未完全明确. 近几年,HBx参与生物学过程的分子机制研究有了较快的进展. 有趣的是,研究发现,HBx在不同的细胞系以及HBV感染的不同阶段发挥促抑凋亡的双重作用,HBx还参与细胞自噬的调控. 此外,在HBx参与细胞增殖及肿瘤侵袭和转移等方面,也产生了一些新的认识. 本文将从HBx对肝细胞凋亡、自噬和增殖的调控及其对肝癌细胞转移和侵袭的调控等方面,对HBx参与肝细胞癌发生发展调控机制做一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号