首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Acetamido-2-deoxy-d-glucose and 2-(benzyloxycarbonylamino)-2-deoxy-d-glucose were each treated with 2,2-dimethoxypropane in N,N-dimethylformamide containing a trace of p-toluenesulfonic acid. The new 5,6-O-isopropylidene derivatives 2-acetamido-2-deoxy-5,6-O-isopropylidene-d-glucofuranose, 2-acetamido-1,4-anhydro-2-deoxy-5,6-O-isopropylidene-d-arabino-hex-1-enitol, 2-acetamido-2-deoxy-3,4:-5,6-di-O-isopropylidene-aldehydo-d-glucose-dimethyl acetal, and 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopropylidene-d-glucofuranose were isolated. The formation of these furanoid acetals may be important in ascertaining the mechanism of this unique acetonation accompanied by glycosidation.  相似文献   

2.
When treated with a large excess of 2,2-dimethoxypropane or 2,2-dibenzyloxypropane in 1,4-dioxane solution in the presence of p-toluenesulfonic acid,2-acetamido-2-deoxy-d-glucose and 2-(benzyloxycarbonylamino)-2-deoxy-d-glucose yield the corresponding 3,4:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl or dibenzyl acetal in good yield.  相似文献   

3.
Alkaline treatment of 2-acetamido-2-deoxy-3,4:5,6-di-O-isopropylidene-aldehydo-d-glucose, or of the analogous d-mannose derivative,  相似文献   

4.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

5.
The transformation of (5R)-2,6-di-O-benzyl-5-C-methoxy-β-d-galactopyranosyl-(1→4)-2,3:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl acetal (8) into partially protected derivatives of d-xylo- and l-lyxo-aldohexos-5-ulose has been reported, applying appropriate epimerisation methods to its 3′-O- and 4′-O-protected alcoholic derivatives.  相似文献   

6.
Propargyl acetates obtained by ethynylation of aldehydo sugar derivatives, followed by acetylation, can be converted by hydroboration with bis(isoamyl)borane and subsequent treatment with hydrogen peroxide into α,β-unsaturated aldehydes; the latter may also be obtained by treating the original aldehydo sugar derivative with formylmethylenetriphenylphosphorane. By these two routes the aldehydo sugars 2,3-O-isopropylidene-aldehydo-D-glyceraldehyde (1), 2,3,4,5-tetra-O-acetyl-aldehydo-D-arabinose (5), and 2,3:4,5-di-O-isopropylidene-aldehydo-D-arabinose (9) have been converted with 2-carbon chain-extension into the corresponding trans-unsaturated aldehydes 3, 7, and 11, respectively. Likewise, by the acetylene route, 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-D-galacto-hexodialdo-1,5-pyranose (13) was converted into the C8 unsaturated aldehyde 15, although the Wittig route was unsuccessful in this instance, as it was with methyl 2,3-di-O-acetyl-4-deoxy-6-aldehydo-β-L-threo-hex-4-enodialdo-1,5-pyranoside (16).  相似文献   

7.
Derivatives of 6-amino-6-deoxy-D-galactose-6-15N have been synthesized by reaction of the 6-deoxy-6-iodo (1) or 6-O-p-tolylsulfonyl derivative of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose with potassium phthalimide-15N. The reaction of 1 also yielded an elimination product, 6-deoxy-1,2:3,4-di-O-isopropylidene-β-L-arabino-hex-5-enopyranose. The structures of the 6-amino-6-deoxy-D-galactose derivatives and their precursors were characterized by proton- and 13C-n.m.r. spectroscopy, with confirmation of the 13C assignments by selective proton decoupling. Selective broadening of the C-1, C-4, C-5, and C-6 resonances of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by low concentrations of cupric ion was observed, and studied by computerized measurements of the 13C linewidths. The application of this broadening to 13C-spectral assignments of amino sugar derivatives is indicated.  相似文献   

8.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

9.
The synthesis is described of 3-amino-2,3-dideoxy-l-arabino-hexose (10), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (17), methyl 3-amino-2,3-dideoxy-α-l-ribo-hexopyranoside (21), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-xylo-hexopyranoside (26), and certain derivatives from methyl 4,6-O-benzylidene-2-deoxy-α-l-arabino-hexopyranoside (3). Conversion of 2-deoxy-l-arabino-hexose into 3 by modified, standard procedures, and on a large scale, gave a 75% yield.  相似文献   

10.
The reaction of 1,4-anhydro-2-deoxy-5,6-O-isopropylidene-d-arabino-hex-1-enitol (1) with m-chloroperbenzoic acid in ethanol gives 2,3-unsaturated ethyl glycosides together with saturated ethyl glycosides formed by trans-ring opening of 1,2-epoxide intermediates. Similar results are obtained on peroxidation of 1,4-anhydro-2-deoxy-3-O-(2,3:5,6-di-O-isopropylidene-α-d-mannofuranosyl)-5,6-O-isopropylidene-d-arabino-hex-1-enitol (2). Products resulting from osmylation of 1 and 2 and cleavage of the osmate esters are also described. 2-Deoxy derivatives are prepared from 1 and 2 by methoxymercuration-demercuration and also by reduction of 2-bromo-2-deoxy derivatives obtained by ethoxybromination.  相似文献   

11.
Attempts to prepare 1,2:5,6 and 2,3:5,6 di-unsaturated sugars starting from 3,4,6-tri-O-acetyl-1,5-anhydro-1,2-dideo xy-d-arabino-hex-1-enitol or from ethyl 4,6-di-O-acetyl-1,5-anhydro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside led to 1,5-anhydro-1,2,6-trideoxy-l-threo-hex-5-enitol and its 3,4-diacetate. Hydrogenation and hydrogenolysis of the unsaturated chloro and fluoro derivatives afforded 1,5-anhydro-1,2,6-trideoxy-d-arabino-hexitol and ethyl 4-O-acetyl-2,3,6-trideoxy-α-d-erythro-hexopyranoside.  相似文献   

12.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

13.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

14.
Methyl 4-amino-3,4-dideoxy-β-D-ribo-hexopyranoside (17) and its uronic acid (19) were synthesized via a series of reactions starting from 1,2:5,6-di-O-isopropylidene-3-O-tosyl-α-D-glucofuranose. A method suitable for the large scale preparation of 3,4-dideoxy- 1,2:5,6-di-O-isopropylidene-α-D-erythro-hex-3-enofuranose(2) was devised.  相似文献   

15.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

16.
1,2:5,6-Di-O-isopropylidene-α-D-allofuranose (1), 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2), and 1,2.3,4-di-O-isopropylidene-α-D-galactopyranose (3) have been separately treated in pyridine solution with trifluoromethanesulphonic anhydride, 2,2,2-trifluoroethanesulphonyl chloride, and pentaflucrobenzenesulphonyl chloride. Both 1 and 2 afforded the anticipated sulphonic esters. Although 3 also gave the 2,2,2-trifluoroethanesulphonic and pentafluorobenzenesulphonic esters, the reaction with trifluoromethanesulphonic anhydride yielded 6-deoxy-1,2:3,4-di-O isopropylidene-6-pyridino-α-D-galactopyranose trifluoromethanesulphonate.  相似文献   

17.
Methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-β-d-glucofuranoside (11) was obtained in six steps from the known methyl 3-O-allyl-2-benzamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside. Mild acid hydrolysis, followed by benzylation gave the 5,6-dibenzyl ether. The benzamido group was exchanged for an acetamido group by strong alkaline hydrolysis, followed by N-acetylation, and the allyl group was isomerized into a 1-propenyl group that was hydrolyzed with mercuric chloride. Treatment of 11 with l-α-chloropropionic acid and with diazomethabe gave methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucofuranoside which formed on mercaptolysis the internal ester 16, further converted into 2-acetamido-4-O-acetyl-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-d-glucose diethyl dithioacetal (18) by alkaline treatment followed by esterification with diazomethane and acetylation. Attempts to remove the O-acetyl group of the corresponding dimethyl acetal 20 with sodium methoxide in mild conditions were not successful.  相似文献   

18.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

19.
《Carbohydrate research》1986,146(1):63-72
Partial oxyamination of 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside with chloramine-T and osmium tetraoxide gave 4,6-di-O-acetyl-2-deoxy-2-(p-toluene-sulfonamido)-α-d-mannopyranosyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside and its 3-deoxy-3-(p-toluenesulfonamido) regioisomer, each in 18–19% isolated yield. Osmium tetraoxide-catalyzed cis-hydroxylation of the remaining alkenic residue in these products led in high yields to the corresponding triols having the α-d-manno, α-d-manno configuration. These were N-desulfonylated (and simultaneously O-deacetylated) by the action of sodium in liquid ammonia to furnish 2-amino-2-deoxy-α-d-mannopyranosyl α-d-mannopyranoside and 3-amino-3-deoxy-α-d-mannopyranosyl α-d-mannopyranoside as new, trehalose-type amino sugars.  相似文献   

20.
Condensation of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal with 2-methyl-(3,4,6-tri-O-acetyl- 1,2-dideoxy-α-D-glucopyrano)-[2′, 1′:4,5]-2-oxazoline in the presence of a catalytic amount of p-toluenesulfonic acid afforded crystalline 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (3) in 25% yield. Catalytic deacetylation of 3 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave 2-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-mannose (4). Treatment of 3 with boiling 0.5% methanolic hydrogen chloride under reflux gave methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannopyranoside (5) and methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannofuranoside (6). The inhibitory activities of 4, 5, and 6 against the hemagglutinating and mitogenic activities of Lens culinaris and Pisum sativum lectins and concanavalin A were assayed. From the results of these hapten inhibition studies, subtle differences of specificity between these D-mannose-specific lectins were confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号