首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A previous investigation of the structure of the extracellular polysaccharide gum from the nitrogen-fixing Rhizobium strain cb744 (a member of the slow-growing Cowpea group) indicated that there were two β-(1→4)-linked d-glucopyranosyl residues for each α-(1→4)-linked d-mannopyranosyl residue, and that each mannose was substituted at O-6 by a β-d-galactopyranosyl residue having 71% of the galactose present as 4-O-methylgalactose. The present study shows that, although the gum appeared to have a simple tetrasaccharide repeating unit, it is composed of two closely associated components. One is a (1→4)-linked α-d-mannan substituted at each O-6 by a β-d-galactopyranosyl residue (71% 4-O-methylated). The second component is a (1→4)-linked β-d-glucan. The existence of the two polysaccharides was established by separation of the β-d-galactosidase-treated gum on a column of concanavalin A-Sepharose 4B. The d configurations were determined and the anomeric attribution of the linkages confirmed by the use of enzymes. The interaction between the two gum components is discussed.  相似文献   

2.
《Carbohydrate research》1987,161(1):113-126
An l-arabino-d-galactan and an l-arabino-d-galactan-containing proteoglycan were isolated from hot phosphate-buffered saline extracts of radish seeds by ethanol fractionation, ion-exchange chromatography, and gel filtration, and found homogeneous by ultracentrifuge analysis and high-voltage electrophoresis. The proteoglycan consisted of 86% of a polysacchraide component containing β-l-arabinose and d-galactose as major sugar constituents, together with small proportions of d-xylose, d-glucose, and uronic acids, and 9% of a hydroxyproline-containing protein. Methylation analysis, periodate oxidation, and enzymic degradations indicated a backbone chain of (1å3)-linked β-dgalactosyl residues with side chains at O-6 of (1å6)-linked β-d-galactosyl residues and uronosyl groups. The α-l-arabinofuranosyl residues were located mainly in the outer regions as nonreducing groups, as well as O-2- or -5-linked inner chain residues, and O-2,5- or -3,5-linked branching residues. Reductive, alkaline degradation of the proteoglycan indicated that the polysaccharide chains were partly linked through O-glycosyl linkages to the threonine residues of the polypeptide chains. The proteoglycans from radish leaves and seeds appeared to share common antigenic determinant(s). The radish-seed arabinogalactan had a high content (81%) of l-arabinose and its basic structure seemed to be similar to that of the polysaccharide component of the proteoglycan.  相似文献   

3.
The cotyledon of the seed of Mirabilis jalapa was found to contain a d-glucan. Methylation, periodate oxidation, and graded and enzymic hydrolysis studies were conducted to elucidate its structure. For every 38 d-glucosyl residues therein, 34 are (1→4)- and 3 are (1→3)-linked; the d-glucosyl unit at the branch point is linked through O-1, O-2, and O-4. In some places in the chain, there are at least three (1→3)-linked d-glucosyl residues in a sequence. Both α- and β-d-glucosidic linkages are present in the polysaccharide, the former preponderating. The d-glucan gave with iodine a faint blue color that had λmax 420 nm.  相似文献   

4.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

5.
Two classes of neutral polysaccharide which could not be separated from each other by conventional methods were isolated from the fungus, Lampteromyces japonicus, by affinity chromatography using concanavalin A-Sepharose. The polysaccharide retained on the concanavalin A-Sepharose column was eluted with 0.05 M methyl α-d-mannopyranoside and appeared to be α-mannan, while that which passed through the column was virtually all β-glucan.Both polysaccharides were subjected to Smith-type degradation, methylation, acetolysis and glucosidase treatment. The results indicated that the α-mannan contained predominantly α-(1 → 2)-linked side chains branching from an α-(1 → 6)-linked backbone at the (1 → 2,6)-linked mannopyranosyl residues. Galactose was attached to approximately one-quarter of the non-reducing mannose terminals. The β-glucan seemed to contain mainly (1 → 6)-linked side chains branching from a (1 → 3)-linked backbone at the (1 → 3,6)-linked glucopyranosyl residues.  相似文献   

6.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

7.
The plant gum isolated from sap of the lac tree, Rhus vernicifera (China), was separated into two fractions having mol. wt. 84,000 and 27,700 by aqueous-phase gel-permeation chromatography. The fractions contain d-galactose (65 mol%), 4-O-methyl-d-glucuronic acid (24 mol%), d-glucuronic acid (3 mol%), l-arabinose (4 mol%), and l-rhamnose (3 mol%). Smith degradation of the carboxyl-reduced polysaccharides gives products of halved molecular weight, and these consist of a β-(1→3)-linked galactopyranan main chain and side chains made up of galactopyranose residues. Peripheral groups, such as α-d-Galp-, α-d-Galp-(1→6)-β-d-Galp-, 4-O-methyl-β-d-GlcpA-, and 4-O-methyl-β-d-GlcpA-(1→6)-β-d-Galp-, are attached to this interior core through β-(1→3)- or β-(1→6)-linkages.  相似文献   

8.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

9.
The combining site of the Bauhinia purpurea alba lectin was studied by quantitative precipitin and precipitin inhibition assays. Of 45 blood group substances, glycoproteins, and polysaccharides tested, 35 precipitated over 75% of the lectin. Precursor blood group substances with I activity (Cyst OG 10% from 20% and Cyst OG 20% from 10%), desialized fetuin, and desialized ovine salivary glycoprotein, in which more than 75% of the carbohydrate side chains have dGalN Ac linked through α1 → to the OH group of Ser or Thr of a protein core, completely precipitated the lectin. The poorly reactive blood group substances after mild acid hydrolysis or Smith degradation, as well as sialic acid-containing glycoproteins after removal of sialic acid, had substantially increased activity so that more than 80% of the lectin was precipitated. Precipitability with various blood group substances and glycoproteins is ascribable to the terminal nonreducing dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 3 or 4dGlcNAc, and dGalβ1 → 3 or 4dGlcNAcβ1 → 3dGal determinants on the carbohydrate moiety. Of the monosaccharides tested for inhibition of precipitation, dGalNAc and its p-nitrophenyl and methyl α-glycosides were best. These compounds were four to five times better than the corresponding dGal compounds but methyl βDGalNAcp was only about 40% more active than methyl βdGalp. The α-anomers of p-nitrophenyl DGalNAcp and dGalp, were twice as active as the corresponding β-anomers. Methyl αDGalNAcp was four times as active as the β-anomer but the inhibitory power of the methyl α- and β-anomers of dGal were about equal. Among the oligosaccharides tested, dGalβ1 → 3dGalNAc and its tosyl derivatives were most active, the tosyl glycosides being about twice as active as dGalβ1 → 3dGalNAc, which was somewhat more active than dGalNAcα1 → 6dGal and dGalNAc, and 2.5 and 5 times as active as dGalNAcα1 → 3dGalβ1 → 3dGlcNAc and dGalNAcαl → 3dGa1, respectively (blood group A specific). These findings suggest that a subterminal dGalNAc β-linked and substituted on carbon 3 plays an important role in binding. Consistent with this inference are the findings that dGalβ1 → 3dGlcNAc and dGalβ1 → 6dGal were poorer inhibitors although dGalβ1 → 3dGlcNAc was two to three times as active as glycosides of dGal. Oligosaccharides with terminal nonreducing dGal and subterminal α-linked dGal were as active or less active than dGal. dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc (lacto-N-tetraose) and dGalβ1 → 3dGlcNAcβ1 → 3dGal-β1-O-(CH2)8COOCH3 were equally active and 1.5 times as potent as dGalβ1 → 3dGlcNAc whereas dGalβ1 → 3dGlcNAcβ1 → 6dGal was only 40% as potent as dGalβ1 → 3dGlcNAc suggesting that a third sugar may be part of the determinant. Substitution of dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc on the subterminal dGlcNAc by lFucα1 → 4 in lacto-N-fucopentaose II reduced activity fourfold; if the nonreducing dGal is substituted by lFucα1 → 3 as in lacto-N-fucopentaose I its activity is almost completely abolished. This suggests that a terminal nonreducing dGal as well as subterminal dGlcNAc are contributing to binding. The β → 3 linkage of the terminal dGal to the subterminal amino sugar is significant since dGalβ1 → 4dGlcNAc is a poorer inhibitor. Although the available data suggest that the combining site of the lectin Bauhinia purpurea alba may be most complementary to the structure dGalβ1 → 3dGalNAcβ1 → 3dGal, several other possibilities remain to be tested when suitable oligosaccharides become available.  相似文献   

10.
A unique, alkali-soluble polysaccharide has been isolated from the cell walls of the basidiomycete Coprinus macrorhizus microsporus. The polysaccharide, which is primarily a glucan, contains a large proportion of α-(1→4)-linked d-glucose residues and a smaller amount of β-(1→3) and (1→6) linkages, as suggested by methylation, partial acid hydrolysis, periodate oxidation, and enzymic studies. Hydrolysis of the methylated polysaccharide gave equimolar amounts of 2,4-di- and 2,3-di-O-methyl-d-glucose; no 2,6-di-O-methyl-d-glucose was identified, indicating the absence of branch points joined through O-1, O-3, and O-4. The isolation and identification of 2-O-α- glucopyranosylerythritol from the periodate-oxidized polysaccharide suggests that segments of the a-(1→4)-linked d-glucose residues are joined by single (1→3)-linkages. An extracellular enzyme-preparation from Sporotrichum dimorphosporum (QM 806) containing both β-(1→3)- and α-(1→4)-d-glucanohydrolase activity released 76% of the reducing groups from the polysaccharide. The polysaccharide also contains minor proportions of xylose, mannose, 2-amino-2-deoxyglucose, and amino acids.  相似文献   

11.
2-O-Benzoyl-3,4,6-tri-O-benzyl-1-O-tosyl-d-mannopyranose and 2,3,4-tri-O- benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-d-glucopyranose were allowed to react with partially blocked 2-[4-(p-toluenesulfonamido)phenyl]ethyl α-d-manno- and -gluco-pyranosides. Disaccharides having α-d-Manp-(1→2)-α-D-Manp, α-d-manp-(1→6)-α-d-Manp, α-d-Manp-(1→6)-α-d-Manp, and α-d-Glcp-(1→6)-α-d-Manp structures, and a branched trisaccharide having the structure α-d-Manp-(1→2)-[α-d-Manp-(1→6)]-α-d-Manp were synthesized. The oligosaccharides were deblocked with sodium in liquid ammonia to give glycopyranosides having a free primary aromatic amine which were converted into isothiocyanate derivatives with thiophosgene. The functionalized oligosaccharides were then coupled to bovine serum albumin to give protein conjugates.  相似文献   

12.
《Carbohydrate research》1988,172(1):97-112
The complete structure of the acidic, extracellular, capsular polysaccharide of Rhizobium trifolii 843 has been elucidated by a combination of chemical, enzymic, and spectroscopic methods, confirming an earlier proposed sugar sequence and assigning the locations of the acyl substituents. The polysaccharide was depolymerized by a lyase into octasaccharide units which were uniform in carbohydrate composition and linkage. These units also contained a uniform distribution of acetyl and pyruvic acetal [O-(1-carboxyethylidene)] groups, and half of them were further acylated with d-3-hydroxybutanoyl groups. A much smaller proportion (<5%) of the oligomers was further acylated by a second d-3-hydroxy-butanoyl group. The locations of the substituents were determined chemically and by J-correlated, 1H-n.m.r. spectroscopy, proton nuclear Overhauser effect (n.O.e.)_ measurements, doubie-resonance 1H-n.m.r. spectroscopy, and 13C-n.m.r. spectroscopy. The composition and structure of the carbohydrate chain were determined by methylation analysis using g.l.c.-m.s. fast-atom-bombardment mass spectrometry, and n.m.r. studies on the reduced, deacylated oligomer. Structural studies were supplemented by n.m.r. analyses on the original polymer. The oligosaccharides were found to be branched octasaccharides with four sugar residues in each branch, and the carbohydrate sequence agreed well with that expected from earlier work. In the abbreviated sequence and structure (1a), the sugar residues are labelled “a” through “h”. The main chain (a–d) is composed of a 4-deoxy-α-l-threo-hex-4-enopyranosyluronic acid group (a) that is linked to O-4 of a 3-O-acetyl-d-glucosyluronic acid residue (b) which is β-linked to O-4 of a d-glucosyl residue (c). Residue c is β-linked to O-4 of the branching d-linked to O-4 of a d-glucosyl residue (d). The side chain consists of a substituted d-galactosyl group (h) which is β-linked to O-3 of residue 9 of a β-(1→4)-linked d-glucose trisaccharide (fragment e–f–g). The reducing end of the resulting tetrasaccharide (e–f–g–h) is β-linked to O-6 of the branching d-glucose residue (d). In the native polymer, this branching residue is α-linked to O-4 of the modified d-glucuronic acid residue (a) which is the unsaturated sugar in the oligomer. A small proportion of the O-2 atoms of the acetylated d-glucosyluronic acid residues is acetylated because of ester migration. The two terminal sugars (g and h) of the branch chain bear 4,6-O-(1-carboxyethylidene) groups. The d-galactosyl groups of half of the oligomers are acylated by d-3-hydroxybutanoyl groups at O-3. About 5% of the oligomers bear a second d-3-hydroxybutanoyl group at O-2 of the d-galactosyl group (h).  相似文献   

13.
The substitution pattern of the water-soluble l-arabino-(4-O-methyl-d-glucurono)-d-xylan from redwood (Sequoia sempervirens) has been studied by enzymic degradation. Exhaustive hydrolysis by an endo-xylanase (EC 3.2.1.8) from a Basidiomycete Sporotrichum dimorphosporum left a residue accounting for 20% of the original d-xylan. In the dialyzable material, oligosaccharides having arabinose or 4-O-methylglucuronic acid residues attached to the non-reducing d-xylosyl end-group of xylobiose or xylotriose, respectively, were the smallest branched oligomers released. Action of the xylanase appears to involve a region of the polysaccharide backbone having three xylosyl residues. A mode of action is proposed that requires unsubstituted hydroxyl groups at C-2, C-3, and C-2′ of a xylobiosyl residue. The binding site seems to correspond to a shallow cavity. The composition and structure of the final residue of attack shows that the enzyme has no action when the xylosyl residues branched through O-2 are separated by only one, unsubstituted xylose residue. This pattern of action, the nature of the dialyzable products, and the production of a final residue in which the substituents are accumulated, suggest that the arabinosyl and glucosyl-uronic groups are irregularly distributed on the main chain of the xylan from redwood and that in some regions they are in close vicinity when not actually on adjacent xylosyl residues.  相似文献   

14.
A l-fucose-containing arabinogalactan-protein that strongly inhibited hemagglutination by eel anti-H agglutinin of human O erythrocytes was purified from hot phosphate-buffered saline extracts of mature leaves of rape, Brassica campestris. The purified glycoconjugate consisted of 90% of the polysaccharide moiety comprising l-fucose, l-arabinose, d-galactose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid, and 4% of the hydroxyproline-rich protein portion. Upon methylation, periodate oxidation, and enzymatic degradation, we found that consecutive β-(→3)-linked d-galactopyranosyl residues constituted a backbone chain of the polysaccharide moiety, to which the side chains of β-(→6)-linked d-galactopyranosyl residues were attached through O-6. Most of l-arabinofuranosyl residues were linked as single units through 0-3 to the side chains while a small quantity of the sugar was present as (1→2)-, (1→3)-, or (1→5)-linked inter-chain residues. Single residues of α-l-fucopyranose, apparently attached to (1→2)-linked l-arabinofuranosyl residues, reacted with eel anti-H precipitin and Aleuria aurantia l-fucose-specific lectin, and were assumed to be crucial in the expression of the H-like activity. The uronosyl residues were also located at the non-reducing terminal ends. Reductive alkaline degradation of the arabinogalactan-protein provided indications that the polysaccharide chains were mainly conjugated through serine-O-glycosidic linkages to the polypeptide core. In an immunoprecipitation test, the rape leaf arabinogalactan-protein cross-reacted with antisera raised against radish leaf arabinogalactan-protein, indicating that these cruciferous arabinogalactan-proteins share common immunodeterminant(s) in their molecules.  相似文献   

15.
A water-soluble glucan, AR-Glucan, from the roots of Angelica acutiloba was obtained homogeneous as determined by ultracentrifugal analysis, electrophoresis, and gel filtration. AR-Glucan was composed Of d-glucose, and its MW was estimated to be 13 500. Methylation analysis indicated that AR-Glucan contained 4-O- and 4,6-di-O-substituted glucosyl residues. 1H and 13C NMR data accorded with the results of methylation analysis, and the glycosidic linkages in AR-Glucan were shown to have the α-configuration. The results of β-amylase, α-amylase, and pullulanase treatments of AR-Glucan showed that it contained (1 → 4) linked α-d-glucosyl side chains of long chain length such as amylopectin. Thus, AR-Glucan is a (1 → 4) linked α-d-glucan to which are attached glucosyl side chains at O-6 of the glucosyl residues of the main chain.  相似文献   

16.
The distribution of the 4-O-methyl-d-glucuronic acid residues in birch xylan has been studied. Elimination of the 4-O-methyl-d-glucuronic acid residues of methylated birch-xylan was followed by specific cleavage of the xylan backbone at the originally branched d-xylose residues, using a technique involving sequential oxidation, β-elimination, and mild hydrolysis with acid. The molecular weight distribution of the resulting methylated oligosaccharides indicates that the 4-O-methyl-d-glucuronic acid residues are irregularly distributed in birch xylan.  相似文献   

17.
The structure of the extracellular polysaccharide gum from nitrogen-fixing Rhizobium sp. strain CB744 (a member of the slow-growing Cowpea group) has been investigated. Gas-chromatographic analysis of the alditol acetates of the acid hydrolysate showed the gum to be composed of galactose, 4-O-methylgalactose, mannose, and glucose in the molar ratio of 1:2.5:3.5:7.0. The polysaccharide is unusual in that it contains no carbonyl substituent, although such substituents are common amongst polysaccharides produced by the slow-growing group. The native and de-branched polysaccharides were examined by methylation analysis. The anomeric configurations were determined by 13C-n.m.r. and oxidation by chromium trioxide. It is concluded that there are two β-(1→4)-linked glycopyranosyl residues for each α-(1→4)-linked mannopyranosyl residue, and that each mannose is substituted at O-6 by a β-galactopyranosyl residue, with 71% of the galactose groups being present as 4-O-methylgalactose.  相似文献   

18.
Two amyloid-type fractions were isolated from field-bean (Dolichos lablab) hulls by 10% alkali extraction followed by acetylation and solvent fractionation. The major, chloroform-insoluble fraction and a minor, chloroform-soluble fraction were found to be homogeneous in sedimentation analysis and molecular-sieve chromatography. The polysaccharides contained xylose and glucose in various proportions. Methylation analysis, periodate oxidation, Smith degradation, oxidation by chromium trioxide, and oligosaccharide studies indicated a new type of structure for the major fraction (glucose:xylose ratio of 1.9:1) in that it had a backbone of (1→4)-linked β-d-glucose residues interspersed with single or multiple residues of (1→4)-linked β-d-xylose, and to which some single d-xylosyl groups are attached through O-6 of d-glucose. In contrast, the minor fraction (glucose:xylose ratio of 1:3.7) had a backbone of (1→4)-linked β-d-xylose interspersed with (1→4)-β-d-glucose and having a side chain of d-xylose, attached through O-6 of d-glucose. The third fraction was found to be a mixture of linear (1→4)-d-glucan and (1→4)-d-xylan.  相似文献   

19.
Distribution of α-d-galactopyranosyl side-chain groups in two galactomannans, guaran and locust-bean gum, was determined by measurement of the O-acetyl-O-methyl-d-mannitol derivatives obtained from the corresponding primary C-p-tolylsulfonyl polysaccharide derivatives. The O-acetyl-O-methyl-d-mannitol derivatives were produced by β-elimination and methylation, with sodium (methylsulfinyl)methide and methyl iodide, of the primary C-p-toluenesulfinylated galactomannans, followed by sequential acid hydrolysis, reduction, and acetylation of the partially degraded p-tolyl sulfones. The results indicated that side-chain units of guaran are alternately disposed along the d-mannan backbone, whereas those of locust-bean gum are disposed in uniform blocks along the backbone.  相似文献   

20.
A.J. Buchala 《Phytochemistry》1973,12(6):1373-1376
An arabinogalacto(4-O-methylglucurono)xylan with a DPn of ca. 96 has been isolated from the leaves of barley. Based on structural studies it is proposed that the hemicellulose consists of a main chain of β (1→4)-linked d-xylopyranosyl residues to which are attached an average of 8·1 l-arabinofuranosyl residues, 3·8 galactopyranosyl-(1→4)-d-xylopyranosyl-(1→2)-l-arabinofuranosyl residues and 4·4 4-O-methyl-d-glucopyranuronosyl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号