首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation and control of cell polarity is a fundamental mechanism for directed migration of the cell. In developing neurons, the axonal growth cone recognizes environmental molecular cues and migrates toward its correct target, thereby forming neuronal networks. The spatial information provided by environmental cues directs axon growth and guidance through generating polarity of intracellular signals and cytoskeletal organization in the growth cone. This polarization process is dependent on lipid rafts, specialized microdomains in the cell membrane. Lipid rafts in specific regions of the growth cone are involved in axon growth and guidance. For example, forward migration of the growth cone requires raft membranes in its leading front. Recent experiments have suggested that lipid rafts function as a platform for localized signaling downstream of adhesion molecules and guidance receptors. The rafts assemble into an active membrane domain that captures and reorganizes the cytoskeletal machinery. In this way, the spatial control of signaling through raft membranes plays a critical role in translating extracellular information into polarized motility of the growth cone.  相似文献   

2.
Dynamic cytoskeletal rearrangements are involved in neuronal growth cone motility and guidance. To investigate how cell surface receptors translate guidance cue recognition into these cytoskeletal changes, we developed a novel in vitro assay where beads, coated with antibodies to the immunoglobulin superfamily cell adhesion molecule apCAM or with purified native apCAM, replaced cellular substrates. These beads associated with retrograde F-actin flow, but in contrast to previous studies, were then physically restrained with a microneedle to simulate interactions with noncompliant cellular substrates. After a latency period of ~10 min, we observed an abrupt increase in bead-restraining tension accompanied by direct extension of the microtubule-rich central domain toward sites of apCAM bead binding. Most importantly, we found that retrograde F-actin flow was attenuated only after restraining tension had increased and only in the bead interaction axis where preferential microtubule extension occurred. These cytoskeletal and structural changes are very similar to those reported for growth cone interactions with physiological targets. Immunolocalization using an antibody against the cytoplasmic domain of apCAM revealed accumulation of the transmembrane isoform of apCAM around bead-binding sites. Our results provide direct evidence for a mechanical continuum from apCAM bead substrates through the peripheral domain to the central cytoplasmic domain. By modulating functional linkage to the underlying actin cytoskeleton, cell surface receptors such as apCAM appear to enable the application of tensioning forces to extracellular substrates, providing a mechanism for transducing retrograde flow into guided growth cone movement.  相似文献   

3.
4.
Guiding neuronal growth cones using Ca2+ signals   总被引:4,自引:0,他引:4  
Pathfinding by growing axons in the developing or regenerating nervous system is guided by gradients of molecular guidance cues. The neuronal growth cone, located at the ends of axons, uses surface receptors to sense these cues and to transduce guidance information to cellular machinery that mediates growth and turning responses. Cytoplasmic Ca2+ signals have key roles in regulating this motility. Global growth cone Ca2+ signals can regulate cytoskeletal elements and membrane dynamics to control elongation, whereas Ca2+ signals localized to one side of the growth cone can cause asymmetric activation of effector enzymes to steer the growth cone. Modulating Ca2+ levels in the growth cone might overcome inhibitory signals that normally prevent regeneration in the central nervous system.  相似文献   

5.
Nerve growth cones are motile, exploring organelles at the tip of a growing neurite. The growth cone is a highly specialized structure, equipped with a complex machinery for reversible membrane expansion and rapid cytoskeletal reorganization, a machinery required for growth cone motility and neurite elongation. It also contains perception systems that enable the growth cone to respond to external signals, thereby steering the trailing neurite to the correct target. Soluble and substrate bound guidance molecules in the environment modulate growth cone behavior either through direct interaction or classical receptor activation coupled to second messengers. A prominent phosphoprotein of the growth cone is B-50. We propose a role for this growth-associated protein kinase C substrate in signal transduction processes in the growth cone.  相似文献   

6.
The complex process of axon guidance is largely driven by the growth cone, which is the dynamic motile structure at the tip of the growing axon. During axon outgrowth, the growth cone must integrate multiple sources of guidance cue information to modulate its cytoskeleton in order to propel the growth cone forward and accurately navigate to find its specific targets1. How this integration occurs at the cytoskeletal level is still emerging, and examination of cytoskeletal protein and effector dynamics within the growth cone can allow the elucidation of these mechanisms. Xenopus laevis growth cones are large enough (10-30 microns in diameter) to perform high-resolution live imaging of cytoskeletal dynamics (e.g.2-4 ) and are easy to isolate and manipulate in a lab setting compared to other vertebrates. The frog is a classic model system for developmental neurobiology studies, and important early insights into growth cone microtubule dynamics were initially found using this system5-7 . In this method8, eggs are collected and fertilized in vitro, injected with RNA encoding fluorescently tagged cytoskeletal fusion proteins or other constructs to manipulate gene expression, and then allowed to develop to the neural tube stage. Neural tubes are isolated by dissection and then are cultured, and growth cones on outgrowing neurites are imaged. In this article, we describe how to perform this method, the goal of which is to culture Xenopus laevis growth cones for subsequent high-resolution image analysis. While we provide the example of +TIP fusion protein EB1-GFP, this method can be applied to any number of proteins to elucidate their behaviors within the growth cone.  相似文献   

7.
Directional guidance of nerve growth cones   总被引:4,自引:0,他引:4  
The intricate connections of the nervous system are established, in part, by elongating axonal fibers that are directed by complex guidance systems to home in on their specific targets. The growth cone, the major motile apparatus at the tip of axons, explores its surroundings and steers the axon along a defined path to its appropriate target. Significant progress has been made in identifying the guidance molecules and receptors that regulate growth cone pathfinding, the signaling cascades underlying distinct growth cone behaviors, and the cytoskeletal components that give rise to the directional motility of the growth cone. Recent studies have also shed light on the sophisticated mechanisms and new players utilized by the growth cone during pathfinding. It is clear that axon pathfinding requires a growth cone to sample and integrate various signals both in space and in time, and subsequently to coordinate the dynamics of its membrane, cytoskeleton and adhesion to generate specific responses.  相似文献   

8.
Cytoskeletal dynamics and transport in growth cone motility and axon guidance   总被引:20,自引:0,他引:20  
Dent EW  Gertler FB 《Neuron》2003,40(2):209-227
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.  相似文献   

9.
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.  相似文献   

10.
Rho family GTPases have been implicated in neuronal growth cone guidance; however, the underlying cytoskeletal mechanisms are unclear. We have used multimode fluorescent speckle microscopy (FSM) to directly address this problem. We report that actin arcs that form in the transition zone are incorporated into central actin bundles in the C domain. These actin structures are Rho/Rho Kinase (ROCK) effectors. Specifically, LPA mediates growth cone retraction by ROCK-dependent increases in actin arc and central actin bundle contractility and stability. In addition, these treatments had marked effects on MT organization as a consequence of strong MT-actin arc interactions. In contrast, LPA or constitutively active Rho had no effect on P domain retrograde actin flow or filopodium bundle number. This study reveals a novel mechanism for domain-specific spatial control of actin-based motility in the growth cone with implications for understanding chemorepellant growth cone responses and nerve regeneration.  相似文献   

11.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

12.
Neural cell adhesion molecules (CAMs) of the immunoglobulin superfamily engage in multiple neuronal interactions that influence cell migration, axonal and dendritic projection, and synaptic targeting. Their downstream signal transduction events specify whether a cell moves or projects axons and dendrites to targets in the brain. Many of the diverse functions of CAMs are brought about through homophilic and heterophilic interactions with other cell surface receptors. An emerging concept is that CAMs act as coreceptors to assist in intracellular signal transduction, and to provide cytoskeletal linkage necessary for cell and growth cone motility. Here we will focus on new discoveries that have revealed novel coreceptor functions for the best-understood CAMs--L1, CHL1, and NCAM--important for neuronal migration and axon guidance. We will also discuss how dysregulation of CAMs may also bear on neuropsychiatric disease and cancer.  相似文献   

13.
At the distal most aspect of motile extending axons and dendrites lies the growth cone, a hand like macroorganelle of membrane bound cytoskeleton, packed with receptors, adhesion molecules, molecular motors, and an army of regulatory and signaling proteins. Splayed out along the substratum in vitro, the growth cone resembles an open hand with bundles of filamentous actin, barbed ends outstretched, as if fingers extending from a central domain of dynamic microtubule plus ends. The growth cone acts first as a sensory platform, analyzing the environment ahead for the presence of guidance cues, secondly as a mechanical dynamo establishing focal contact with the extracellular matrix to drive processive forward outgrowth, and thirdly as a forward biochemical command center where signals are interrogated to inform turning, extension, retraction, or branching. During his career, Paul Letourneau has made major contributions to our understanding of how growth cones respond to their environment. Here, we will summarize some of these major advances in their historical context. Letourneau's contributions have provided insights into cytoskeletal organization, growth cone dynamics, and signaling pathways. His recent work has described some important molecules and molecular mechanisms involved in growth cone turning. Although much remains to be understood about this important and intriguing structure, Letourneau's contributions have provided us with "growth cone guidance."  相似文献   

14.
Guidance molecules steer growth cones to their targets by attracting or repelling them. Turning in a new direction requires remodeling of the growth cone and bending of the axon. This depends upon reorganization of actin filaments and microtubules, which are the primary cytoskeletal components of growth cones. This article discusses how these cytoskeletal components induce turning. The importance of each component as well as how interactions between them result in axon guidance is discussed. Current evidence shows that microtubules are influenced by both the organization and dynamics of actin filaments in the peripheral domain of growth cones. Cytoskeletal models for repulsive and attractive turning are presented. Molecular candidates that may link actin filaments with microtubules are suggested and potential signal transduction pathways that allow these cytoskeletal components to affect each other are discussed.  相似文献   

15.
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.  相似文献   

16.
In the fundamental process of neuronal path-finding, a growth cone at the tip of every neurite detects and follows multiple guidance cues regulating outgrowth and initiating directional changes. While the main focus of research lies on the cytoskeletal dynamics underlying growth cone advancement, we investigated collapse and retraction mechanisms in NG108-15 growth cones transiently transfected with mCherry-LifeAct and pCS2+/EMTB-3XGFP for filamentous actin and microtubules, respectively. Using fluorescence time lapse microscopy we could identify two distinct modes of growth cone collapse leading either to neurite retraction or to a controlled halt of neurite extension. In the latter case, lateral movement and folding of actin bundles (filopodia) confine microtubule extension and limit microtubule-based expansion processes without the necessity of a constantly engaged actin turnover machinery. We term this previously unreported second type fold collapse and suggest that it marks an intermediate-term mode of growth regulation closing the gap between full retraction and small scale fluctuations.  相似文献   

17.
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.  相似文献   

18.
The assembly of functional neuronal circuits depends on the correct wiring of axons and dendrites. To reach their targets, axons are guided by a variety of extracellular guidance cues, including Netrins, Ephrins, Semaphorins and Slits. Corresponding receptors in the growth cone, the dynamic structure at the tip of the growing axon, sense and integrate these positional signals, and activate downstream effectors to regulate cytoskeletal organization. In addition to the four canonical families of axon guidance cues mentioned above, some proteins that regulate planar cell polarity were recently found to be critical for axon guidance. The seven-transmembrane domain receptors Celsr3 and Fzd3, in particular, control the development of most longitudinal tracts in the central nervous system, and axon navigation in the peripheral, sympathetic and enteric nervous systems. Despite their unequivocally important role, however, underlying molecular mechanisms remain elusive. We do not know which extracellular ligands they recognize, whether they have co-receptors in the growth cone, and what their downstream effectors are. Here, we review some recent advances and discuss future trends in this emerging field.  相似文献   

19.
Lee H  Engel U  Rusch J  Scherrer S  Sheard K  Van Vactor D 《Neuron》2004,42(6):913-926
Axon guidance requires coordinated remodeling of actin and microtubule polymers. Using a genetic screen, we identified the microtubule-associated protein Orbit/MAST as a partner of the Abelson (Abl) tyrosine kinase. We find identical axon guidance phenotypes in orbit/MAST and Abl mutants at the midline, where the repellent Slit restricts axon crossing. Genetic interaction and epistasis assays indicate that Orbit/MAST mediates the action of Slit and its receptors, acting downstream of Abl. We find that Orbit/MAST protein localizes to Drosophila growth cones. Higher-resolution imaging of the Orbit/MAST ortholog CLASP in Xenopus growth cones suggests that this family of microtubule plus end tracking proteins identifies a subset of microtubules that probe the actin-rich peripheral growth cone domain, where guidance signals exert their initial influence on cytoskeletal organization. These and other data suggest a model where Abl acts as a central signaling node to coordinate actin and microtubule dynamics downstream of guidance receptors.  相似文献   

20.
Cytoskeletal remodeling during growth cone-target interactions   总被引:12,自引:7,他引:5       下载免费PDF全文
《The Journal of cell biology》1993,121(6):1369-1383
Reorganization of the cytoskeleton of neuronal growth cones in response to environmental cues underlies the process of axonal guidance. Most previous studies addressing cytoskeletal changes during growth cone pathfinding have focused on the dynamics of a single cytoskeletal component. We report here an investigation of homophilic growth cone- target interactions between Aplysia bag cell neurons using digitally enhanced video microscopy, which addresses dynamic interactions between actin filaments and microtubules. After physical contact of a growth cone with a physiological target, mechanical coupling occurred after a delay; and then the growth cone exerted forces on and displaced the target object. Subsequent to coupling, F-actin accumulation was observed at the target contact zone, followed by preferential microtubule extension to the same site. After successful target interactions, growth cones typically moved off highly adhesive poly-L- lysine substrates into native target cell surfaces. These events were associated with modulation of both the direction and rate of neurite outgrowth: growth cone migration was typically reoriented to a trajectory along the target interaction axis and rates of advance increased by about one order of magnitude. Directed microtubule movements toward the contact site appeared to be F-actin dependent as target site-specific microtubule extension and bundling could be reversibly randomized by micromolar levels of cytochalasin B in a characteristic manner. Our results suggest that target contacts can induce focal F-actin assembly and reorganization which, in turn, guides target site-directed microtubule redistribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号