首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal adaptations to daylength often limit the effective range of insects used in biological control of weeds. The leaf beetle Diorhabda carinulata (Desbrochers) was introduced into North America from Fukang, China (latitude 44° N) to control saltcedars (Tamarix spp.), but failed to establish south of 38° N latitude because of a mismatched critical daylength response for diapause induction. The daylength response caused beetles to enter diapause too early in the season to survive the duration of winter at southern latitudes. Using climate chambers, we characterized the critical daylength response for diapause induction (CDL) in three ecotypes of Diorhabda beetles originating from 36, 38, and 43° N latitudes in Eurasia. In a field experiment, the timing of reproductive diapause and voltinism were compared among ecotypes by rearing the insects on plants in the field. CDL declined with latitude of origin among Diorhabda ecotypes. Moreover, CDL in southern (<39° N latitude) ecotypes was shortened by more than an hour when the insects were reared under a fluctuating 35-15°C thermoperiod than at a constant 25°C. In the northern (>42° N latitude) ecotypes, however, CDL was relatively insensitive to temperature. The southern ecotypes produced up to four generations when reared on plants in the field at sites south of 38° N, whereas northern ecotypes produced only one or two generations. The study reveals latitudinal variation in how Diorhabda ecotypes respond to daylength for diapause induction and how these responses affect insect voltinism across the introduced range.  相似文献   

2.
温度和光周期对绿盲蝽滞育诱导的影响   总被引:4,自引:0,他引:4  
为了阐明环境因子对绿盲蝽Apolygus lucorum Meyer-Dür卵滞育诱导作用,测定了3个温度和6个光周期组合处理对绿肓蝽的滞育诱导和绿盲蝽光周期感应的敏感虫态,系统调查了绿肓蝽在不同温度和不同光照组合下所产卵的孵化率.结果表明:绿盲蝽的敏感虫态为1龄若虫;在17℃,20℃和23℃3个不同温度下,光照时间小...  相似文献   

3.
Abstract. .The effects of photoperiod and low temperature on diapause termination in the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae), were examined using a population from Ino, Japan. Diapausing insects obtained by rearing larvae under short daylength (12 or 13 h) at 25oC were subjected to various treatments. When the photoperiod was changed at the same temperature, diapausing larvae showed a long-day response with a critical daylength between 13.5 and 14h. The diapause was terminated and consequently pupation occurred if the daylength was longer than 13.5 h. Chilling the diapausing larvae at 10oC for 30 or more days also terminated diapause in most larvae irrespective of the photoperiods during and after chilling treatment. In contrast, the post-chilling photoperiod had a critical effect on development of diapausing larvae chilled for only 15 days.  相似文献   

4.
The cabbage beetle, Colaphellus bowringi, is a short-day species undergoing an imaginal summer and winter diapause. Its photoperiodic response highly depends on temperature. All adults entered diapause at ≤ 20 °C regardless of photoperiods. High temperatures strongly weakened the diapause-inducing effects of long daylengths. The diapause-averting influence of short daylengths was expressed only at high temperatures (above 20 °C). This indicates that the beetle has a cryptic ability to reproduce in summer. In fact, summer and winter diapause were induced principally by relatively low temperatures in the field, whereas photoperiod had less influence on diapause induction. The critical daylength for the autumnal population was between 12 h and 13 h. By transferring from a long day to a short day or vice versa at different times after hatching, it was shown that the sensitive stage with regard to photoperiod was the larva, whereas a long day was photoperiodically more potent than a short day. The sensitive stage to temperature encompassed the larval, pupal and adult stages. This different response pattern serves to ensure that the beetle enters summer and winter diapause in time. The selections for non-diapause trait under laboratory (at 25 °C) and natural conditions (at >24 °C) showed that the beetle could lose its sensitivity to photoperiod very rapidly.  相似文献   

5.
The classical biological control program for exotic saltcedars (various Tamarix species and hybrids) has involved the assessment of different populations of the leaf beetle Diorhabda elongata (Brullé) s.l. that are promising for release in areas of North America that are located south of 37 degrees N latitude. We report here the overwintering survival, phenology, and voltinism of four D. elongata populations (Tunisia, Crete, Uzbekistan, and Turpan) in eastcentral Texas. In addition, we studied their developmental and reproductive biology, which also included the previously released population from Fukang, China. Overwintering survival of the adult beetles of the Crete and Tunisia populations was 90-99 and 75%, respectively. The Uzbekistan and Turpan beetles had <31% overwintering survival. All D. elongata populations began ovipositing in late March. The Turpan beetle may produce three summer generations and ceased oviposition by September. The Crete beetle produced four summer generations plus a partial fifth generation and ceased ovipositing by mid-October. Both the Tunisia and Uzbekistan beetles produced five summer generations plus an unsuccessful partial sixth generation; oviposition extended into late November. Larval development and survival were generally similar among D. elongata populations. The Turpan and Fukang beetles had a shorter preoviposition period and produced more but smaller egg masses than the other beetle populations. However, this did not alter a female's lifetime fecundity and generally did not affect the innate capacity for increase compared with other populations. The Crete beetle seems to be the most promising for release in central Texas and points further south.  相似文献   

6.
大猿叶虫夏滞育的诱导:基于定量的光周期反应   总被引:1,自引:0,他引:1  
为了探明大猿叶虫Colaphellus bowringi Baly夏滞育诱导的光周期时间测量特性, 我们通过室内实验系统比较了该虫在25℃、 不同长光照条件下,夏滞育的发生以及诱导50%个体进入夏滞育所需求的光 暗循环数。结果表明:不同长光照诱导的夏滞育比率有显著差异, 其中15 h或16 h光照诱导的滞育比率最高, 短于或长于这两个光照其滞育率均明显下降。在不同光 暗循环实验中, 14 h诱导的滞育比率均低于50%, 诱导50%个体进入夏滞育所需求的光 暗循环数在L15∶D9, L16∶D8, L17∶ D7和L18∶D6分别为2.61, 3.72, 4.64和5.92 d, 处理间存在显著差异。这些结果提示该虫夏滞育的诱导是基于定量的光周期反应。  相似文献   

7.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

8.
The tamarisk leaf beetle, Diorhabda elongata Brullé deserticola Chen, was collected in northwestern China and has been released in the western United States to control tamarisk (Tamarix spp.). Characteristics of diapause and reproductive development in D. elongata were examined to improve management as a biocontrol agent. Under long days, 16:8 (L:D) h, males began to emit aggregation pheromone within 2-3 d of adult emergence, mating occurred, and females oviposited within 7 d of adult emergence. Under short days, 12:12 (L:D) h, males did not emit pheromone, mating did not occur, and both males and females entered reproductive diapause marked by inconspicuous gonads and hypertrophied fat body. Ovaries of diapausing females lacked vitellogenic oocytes, and the ovarioles were clear and narrow, whereas reproductive females had enlarged ovaries with two to three yellow oocytes per ovariole. Diapausing males had thin, transparent accessory glands and ejaculatory ducts, whereas reproductive males had thick white accessory glands and white opaque ejaculatory ducts. Sensitivity to diapause-inducing photoperiods extended into the adult stage. Reproductive females ceased oviposition, resorbed oocytes, and entered diapause when switched from long to short days. Diapause-destined insects ceased feeding and entered the leaf litter 10-20 d after adult emergence, whereas reproductive insects remained on the plants and fed for at least 30 d. Reproductive insects exhibited dispersal behaviors, such as attempted flights, whereas diapause-destined insects did not show dispersal behaviors. Information gained from these studies will be used to better manage populations in the field and to improve rearing and storage in the laboratory.  相似文献   

9.
The photoperiodic control of diapause induction in the larvae of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe), was investigated using a west Japan-type population collected from Ino, Kochi Prefecture, Japan. In this population, the larvae expressed a long-day photoperiodic response with a critical daylength between 13.5 and 14 h at 25 °C ; under a long daylength, the larvae pupated after the 4th or 5th instar, while the larvae entered diapause under a short daylength after 2.3 additional molts on average. When the photoperiod was changed from a short (L12:D12) to a long (L15:D9) daylength, pupation occurred in most of the individuals irrespective of the time of the change. When the photoperiod was changed from long to short at 1 or 2 weeks after hatching, all of the larvae entered diapause, whereas when the photoperiod was changed at 5 weeks after hatching or later, most of the larvae pupated. The 2 weeks exposures to a long daylength against a 'background' of a short daylength at various times revealed that the larvae of this insect are most sensitive to the photoperiod from 4 to 6 weeks after hatching.  相似文献   

10.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

11.
Periplaneta japonica is semivoltine, entering early diapause in any (except the first) larval instar before the last, and late diapause in the last instar. Early diapause was induced under a short day of 13 h or less at 28°C, and under both short and long daylength (12–16 h) at 20°C. The shorter the daylength and the lower the temperature, the younger the instar was entering early diapause. Early diapause was terminated by a long day (16 h) or a high temperature (28°C), after which larvae grew faster in short days than in long days until the last instar, when they again entered diapause, always in short days and frequently in long days. This late diapause was terminated also by an increase in daylength and was always followed by adult emergence. In this case, 13 and 14 h daylengths after exposure to 12 h daylength were as effective as 16 h daylength. Ourdoor samples collected in late autumn, winter and early spring at Hirosaki (40.5°N) comprised two distinct size groups, corresponding with the early and late diapause instars. Based on these results, the seasonal development strategy and intriguing aspects of the photoperiodic response in this cockroach are discussed.  相似文献   

12.
The cabbage butterfly, Pieris melete is multivoltine with a pupal summer and winter diapause. Summer and winter diapause are induced principally by relatively long and short daylengths, respectively. The intermediate to relatively short daylengths of autumn permitted some pupae to develop without diapause in the field. A short daylength had a stronger diapause inducing effect than a relatively long one under higher temperatures. The principal sensitive phase for photoperiodic response occurred before the late 3rd larval instar. The critical daylength for wild autumnal populations was between 12h 30min and 12h 40min at an average temperature of 20.5 degrees C. A night interruption by 2h of light averted diapause most effectively when it was placed 10 to 12h after lights-off. High temperatures and long days during summer inhibited the incidence of diapause, suggesting that the occurrence of summer diapause is due to the specific climatic conditions occurring in April and early May, rather than to the high temperatures in summer. This indicates that the butterfly has a cryptic ability to reproduce in summer. High temperatures delayed diapause development, whereas low temperatures enhanced it, indicating that the optimum temperature of diapause development is lower. The diapause regulating mechanisms thus ensure that the species synchronises its development and reproduction with the growth seasons of the host plants and provide the species with a high degree of flexibility in its life cycle.  相似文献   

13.
We determined whether exposure to a short day-light regime of 14 h 15 min induces ovarian diapause in Culex pipiens L. mosquitoes from Israel and whether differences occur in certain morphological, physiological and behavioural traits. Samples from nineteen localities in Israel, from 33 degrees 05' N to 29 degrees 35' N latitude, conformed to the morphological criteria of Cx pipiens, sensu stricto (i.e. wider spread of dorsal than of ventral arms of the aedeagus) as determined by negative DV/D ratios of the male. Autogenous females occurred at frequencies of 4-55% in all areas of Israel throughout the breeding season. No mating barriers were detected between individuals of autogenous and anautogenous genotypes. Autogenous females were no more prevalent from polluted or enclosed breeding sites than from others with various degrees of openness. In general, Cx pipiens females fed equally well on human (35% engorgement) and avian (22% engorgement) hosts (P less than 0.01). Although females from the southern part of the study region appeared to be incapable of ovarian diapause, at least some of those from the north experienced diel-mediated diapause. We conclude that, in the Middle East, the 33rd parallel provides a southern limit to the range of Cx pipiens with capability for diel-mediated ovarian diapause, but that non-diapausing Cx pipiens s.l. are present at least as far south as Elat (20 degrees 25' N) on the coast of the Gulf of Aquaba.  相似文献   

14.
二斑叶螨滞育特性的初步研究   总被引:3,自引:0,他引:3  
诱导滞育实验表明 :短日照和低温是诱导二斑叶螨发生滞育的主要因子。测定我国天水种群 ,在 15℃条件下 ,诱导其滞育的临界日照长度为 9小时 4 2分 ,在每日 8小时光照条件下 ,诱导其滞育的临界温度为 15.5℃。解除滞育实验表明 :在每日 13小时的光照条件下 ,温度越高 ,解除越冬雌成螨滞育的速度越快 ;低温处理滞育雌成螨的时间越长 ,解除其滞育的速度也越快。  相似文献   

15.
Thyrassia penangae enters winter diapause as a prepupa in a cocoon. Photoperiodism of diapause induction was systematically investigated in this moth. The photoperiodic response curves under 24-h light-dark cycles showed that this insect is a typical long-day species. The critical daylength was 13 h 30 min at 25 °C, 13 h at 30 °C and 12 h 20 min at 28 °C. Transferring experiments from a short day (LD 12:12) to a long day (LD 15:9) or vice versa indicated that photoperiodic sensitivity mainly occurs during the larval period. In experiments using non-24-h light-dark cycles, when the length of photophase exceeded the critical daylength (13.5 h), was diapause inhibited effectively, even when the length of scotophase exceeded the critical nightlength (10.5 h). Only when a long scotophase was combined with a short photophase, diapause was induced effectively. This result suggests that daylength measurement is more important than nightlength measurement in T. penangae. Night interruption experiments under 24-h light-dark cycles exhibited two points of apparent light sensitivity, but the photosensitive position was highly influenced by temperature and the length of scotophase. Nanda-Hamner experiments failed to reveal the involvement of a circadian system in this photoperiodic time measurement. All light-dark cycles from LD 12:12 to LD 12:72 resulted in a short day response, and all cycles from LD 14:4 to LD 14:72 resulted in a long day response, suggesting that photoperiodic time measurement in this moth is performed by a day-interval timer or an hourglass-like clock.  相似文献   

16.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

17.
The fall webworm, Hyphantria cunea (Drury), enters facultative diapause as a pupa in response to short-day conditions during autumn. Photoperiodic response curves showed that the critical day length for diapause induction was 14 h 30 min, 14 h 25 min and 13 h 30 min at 22, 25 and 28°C, respectively. The photoperiodic responses under non-24 h light–dark cycles demonstrated that night length played an essential role in the determination of diapause. Experiments using a short day length interrupted by a 1-h light pulse exhibited two troughs of diapause inhibition and the effect of diapause inhibition was greater in the early scotophase than in the late scotophase. The diapause-inducing short day lengths of 8, 10 and 12 h evoked greater intensities of diapause than did 13 and 14 h. Diapause can be terminated without exposure to chilling, but chilling at 5°C for 90 and 120 d significantly accelerated diapause development, reduced mortality, and synchronized adult emergence. Additionally, the potential for H. cunea from the temperate region (Qingdao) to emerge and overwinter under field conditions in subtropical regions (Nanchang) of China was evaluated. Pupae that were transferred to Nanchang in early July showed a 60% survival rate and extremely dispersed pupal period (from 12 to 82 days), suggesting that some pupae may undergo summer diapause. Diapausing temperate region pupae that were moved out-of-doors in Nanchang during October showed approximately 20% overwintering survival; moreover, those pupae that overwintered successfully emerged the next spring during a period when their host plants would be available. The results indicate that this moth has the potential to expand its range into subtropical regions of China.  相似文献   

18.
Photoperiodic responses to both constant and changing photoperiods were studied in the Mediterranean tiger moth Cymbalophora pudica. Embryos, larval instars and prepupae were all sensitive to photoperiod, and the responses of larvae and prepupae to changing photoperiods were similar. At 23+/-2 degrees C, constant 24-h photoperiods with short photophases (11, 12h) induced a long diapause (mean 88days) whereas long photophases (14, 16h) induced a short diapause (mean 52days). A change to a longer or shorter photophase during larval development or during diapause caused a significant extension (up to a maximum of 138days) or shortening (down to a minimum of 10days) of diapause, respectively, but only when at least one of the photophases was longer than 14h. Thus, shortening and prolongation of photophase had an opposite effect than constant short and long photophases, respectively. Changes within the range of photophases of 10-14h did not cause a significant change in diapause duration.Experimental results enabled us to outline the mechanisms regulating voltinism and the duration of summer diapause. For the monovoltine cycle, cold autumn/winter temperatures slow down larval development, and prepupal aestivation starts relatively late (March, April). Prepupae are then kept in diapause by the increasing daylength (>14h after late April). Pupation is synchronized by decreasing daylength after summer solstice, and imagoes emerge in September/October. For the bivoltine cycle, when the autumn/winter temperatures are relatively warm, a certain portion of the population (depending on the individual rate of growth) may be diverted to a bivoltine life-cycle. In such a case, larval development is fast and short enough to allow an early start of diapause (prior to or during February). The duration of such early diapause is not influenced by changes in daylength (<14h); pupation occurs very early (April/May), and spring generation imagoes fly and oviposit in May/June. Summer larvae and prepupae live under decreasing daylength (>14h), which shortens their diapause to 20-30days. Imagoes of the autumnal generation thus occur in September/October, together with the univoltine portion of the population.  相似文献   

19.
The small brown planthopper, Laodelphax striatellus (Fallén) enters the photoperiodic induction of diapause as 3rd or 4th instar nymphs. The photoperiodic response curves in this planthopper showed a typical long-day response type with a critical daylength of approximately 11 h at 25°C, 12 h at 22 and 20°C and 12.5 h at 18°C, and diapause induction was almost abrogated at 28°C. The third stage was the most sensitive stage to photoperiod. The photoperiodic response curve at 20°C showed a gradual decline in diapause incidence in ultra-long nights, and continuous darkness resulted in 100% development. The required number of days for a 50% response was distinctly different between the short- and long-night cycles, showing that the effect of one short night was equivalent to the effect of three long nights at 18°C. The rearing day length of 12 h evoked a weaker intensity of diapause than did 10 and 11 h. The duration of diapause was significantly longer under the short daylength of 11 h than it was under the long daylength of 15 h. The optimal temperature for diapause termination was 26 and 28°C. Chilling at 5°C for different times did not shorten the duration of diapause but significantly lengthened it when chilling period was included. In autumn, 50% of the nymphs that hatched from late September to mid-October entered diapause in response to temperatures below 20°C. The critical daylength in the field was between 12 h 10 min and 12 h 32 min (including twilight), which was nearly identical to the critical daylength of 12.5 h at 18°C. In spring, overwintering nymphs began to emerge in early March-late March when the mean daily temperature rose to 10°C or higher.  相似文献   

20.
The cabbage beetle, Colaphellus bowringiBaly (Coleoptera: Chrysomelidae), is a serious pest of crucifers in China, undergoing an imaginal summer and winter diapause in the soil. The effects of host plants on diapause incidence were tested in the beetle. The ratio of adults entering diapause was significantly low when they fed on the mature leaves of Chinese cabbage Shanghaiqin (Brassica chinesis var communis) than those feeding on Chinese cabbage Suzhouqin (Brassica chinesis var communis), radish (Raphanus sativus var longipinnatus) and stem mustard (Brassicajuncea vat tumida) at 25℃ combined with 13:11 (L: D) h. Fewer adults entered diapause on young leaves compared to physiologically aged and mature radish leaves at 25℃ combined with 13:11 (L: D) h. The effect of host plant species on diapause induction was also evident under continuously dark rearing conditions or at different photoperiods. These experimental results demonstrate that host plant mediation of diapause induction exists in the cabbage beetle. However, at temperatures ≤20℃ or photoperiods of 16:8 (L: D) h combined with 25℃, all individuals entered diapause regardless of the host plants, indicating that the effects of host plants on diapause induction could be expressed only within a limited range of temperatures and photoperiods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号