首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析   总被引:4,自引:0,他引:4  
王峰  官春云 《遗传》2010,32(3):271-277
采用常规品系04-1139与高产多角果品系05-1054构建的F2代群体为作图群体, 运用SSR(Simple sequence repeat)和SRAP(Sequence-related amplified polymorphism)构建分子标记遗传图谱并对甘蓝型油菜单株产量构成因素进行QTL分析。遗传图谱包含200个分子标记, 分布于19个连锁群上, 总长度1 700.23 cM, 标记间的平均距离8.50 cM。采用复合区间作图法(Composite interval mapping, CIM)对单株产量构成因素(单株有效角果数、每果粒数和千粒重)进行QTL分析, 共检测到12个QTL: 其中单株有效角果数4个QTL, 分别解释表型变异为35.64%、12.96%、28.71%和34.02%; 每果粒数获得5个QTL, 分别解释表型变异为8.41%、7.87%、24.37%、8.57%和14.31%; 千粒重获得3个QTL, 分别解释表型变异为2.33%、1.81%和1.86%。结果表明: 同一性状的等位基因增效作用可以同时来自高值亲本和低值亲本; 文章中与主效QTL连锁的标记可用于油菜产量性状的分子标记辅助选择和聚合育种。  相似文献   

2.
利用6044×01-35构建的重组自交系(RIL)群体为试验材料,对小麦粒重性状进行发育动态QTL分析。结果表明,在小麦花后子粒灌浆的7个不同时期,两个试验点共检测到16个与粒重性状相关的QTL。其中开花后20d检测到的单穗粒重QTL位于2A染色体上,解释率达12%,遗传效应超过10;两环境下控制千粒重QTL在7个时期均被检测到。花后的各个时期均能在Xgwm448-Xgpw7399标记区间定位到千粒重QTL。其中花后10d检测到1个千粒重QTL,位于2A染色体的Xgwm448-Xgpw7399标记区间,解释较大的表型变异,达到18%。Qtl8、Qtl13和Qtl14均定位在Xgwm448-Xgpw7399标记区间的同一位置,共同解释11%的表型变异。花后20d和花后25d均检测到1个QTL,位于2A染色体的Xgwm372-Xgwm95标记区间的不同位点,均能解释4%的表型变异。花后40d检测到1个QTL,位于1D染色体的Xwmc93-Xgpw2224标记区间,解释1%的表型变异。从连锁群的位置上看,控制千粒重的QTL主要集中在2A染色体的Xgwm448-Xgpw7399标记区间,这是一个控制千粒重QTL的富集区域,以期进行精细定位和图位克隆。  相似文献   

3.
试验拟对谷子重要农艺性状进行数量性状位点QTL分析。以表型差异较大的沈3/晋谷20F2作图群体为材料,观测其株高、穗长等性状,选用SSR做分子标记,利用完备区间作图法(BASTEN C J)进行QTL分析。结果显示,表型数据在作图群体中呈现连续分布,表现为多基因控制的数量性状,被整合的54个SSR标记构建10个连锁群,LOD阈值设置为2.0,检测到与株高相关的主效QTL2个,联合贡献率45.9637%,穗长主效QTL1个,贡献率14.9647%,与穗重、粒重相关的主效QTL为同一位点,贡献率分别为11.9601%和10.1879%。有6组QTL位点之间存在基因互作效应,大小范围为-0.4986-16.6407,对性状的贡献率在2.2716%至6.7478%之间。谷子表型控制复杂,相关QTL的检测受环境影响较大,不同连锁群QTL间互作明显。  相似文献   

4.
以水稻重组自交系珍汕97B×IRAT109 F9代群体195个株系为材料,用213个简单重复系列(SSR)标记构建了基于该群体的连锁图谱,对水稻叶片叶绿素含量和光合速率在干旱和正常条件下的数量性状位点(QTL)和双基因互作进行了分析,同时分析了叶绿素含量与光合速率的相关关系. 结果表明:叶绿素含量与光合速率在正常供水下呈极显著正相关(r=0.185 7,表示在1%水平上显著),但在干旱下则表现无关(r=0.076 6).控制叶绿素含量的基因很复杂,主效QTL有13个,位于1、2、3、4、5、6、10号染色体上;其中,在干旱处理下检测到的主效QTL有6个,位于1、2、3、4、5号染色体上;在正常供水下检测到的主效QTL有7个,位于2、3、4、6、10号染色体上.在干旱和正常条件下它们分别解释了47.39%和56.19%的表型变异;在2种处理下均检出的主效QTL是2、3、4号染色体上的qCC2a、qCC2b、qCC3a、qCC3c、 qCC4a、 qCC4b; 它们位于同一染色体的相同区段.在干旱和正常条件下检测到4个QTL与光合速率有关;其中干旱下有3个(qPR2、 qPR10、 qPR11),正常条件下1个(qPR10).它们分别被定位于2、10、11号染色体,共解释13.94%的表型变异. 叶绿素含量互作效应位点有16对,涉及除10号染色体外的所有染色体;干旱下,有4对互作基因,共解释1857%的表型变异,分别位于1-7、2-4、5-8、6-12号染色体上;正常供水下,有12对互作基因,共解释38.49%的表型变异,分别位于1-3、1-4、1-8、2-4、2-5、3-5、4-11、4-12、5-9、7-12、8-11 号染色体上,其中3-5号染色体不同区段上有两对互作效应位点.  相似文献   

5.
以六倍体裸燕麦578(大粒品种)和三分三(小粒品种)为亲本进行杂交,构建包含202个家系的F2遗传作图群体。由172个SSR标记构建出包含21个连锁群的遗传连锁图谱。采用复合区间作图对子粒性状进行QTL定位,共检测到17个控制子粒长度、宽度、千粒重的QTL位点。其中,6个与子粒长度相关的QTL位点表型的贡献率为0.70%~12.83%,5个与子粒宽度相关的QTL位点表型的贡献率为0.77%~12.92%,6个与子粒千粒重相关的QTL位点表型的贡献率为0.58%~10.64%。在这些QTLs中有4个的贡献率达到了10%以上,分别是与子粒长有关的qGL-2(12.83%)、与子粒宽有关的qGW-5(12.92%)以及与千粒重有关的qTGW-3(10.64%)和qTGW-4(10.05%),被认为是主效基因所在位点。而且qGL-2和qTGW-4位于连锁群的相同位置上。还发现第3号连锁群上AM1089~AM1512区段分别与子粒长度、宽度和千粒重相关,同时3号连锁群AM86-2~AM1044区间分别与子粒长度和千粒重相关,而位于第21号连锁群AM3217~AM965区段分别与子粒宽度和千粒重相关。这一研究为燕麦子粒性状的深入研究和相关标记开发以及分子辅助选择研究奠定了基础。  相似文献   

6.
陆地棉产量性状QTLs的分子标记及定位   总被引:34,自引:0,他引:34  
用我国的高产栽培品种泗棉3号和美国栽培品种TM-1为材料,构建F2和F2∶3作图群体,应用301对SSR引物和1040个RAPD引物,对产量性状QTLs进行了分子标记筛选,结果共筛选出了37对SSR多态性引物和10个RAPD多态性引物的49个位点,鉴定出了控制产量性状变异的主效QTLs。定位于第9染色体的连锁群,分别具有控制铃重、衣分和籽指的主效QTLs,铃重的2个QTLs分别解释F2∶3群体表型变异的18.2%和21.0%;在F2群体检测到的1个衣分QTL解释表型变异的25%,另一个衣分QTL在F2群体和F2∶3群体都检测到,解释F2群体衣分的24.9%的表型变异,解释F2∶3群体衣分的5.9%的表型变异;在F2∶3群体铃重的一个QTL的同一位置同时检测到一个籽指QTL,它解释15.6%的表型变异,是一因多效或是紧密连锁的两个QTLs,有待进一步研究。本研究标记的产量性状主效QTLs可用于棉花产量性状的标记辅助选择。  相似文献   

7.
千粒重是油菜重要的产量相关性状之一,构建油菜遗传连锁图谱是研究其产量性状基因的前提。本研究利用小孢子培养技术,选育出了甘蓝型油菜大粒品系(G-42)和小粒品系(7-9)的纯合DH系DH-G-42和DH-7-9,其千粒重分别为6.24 g和2.42 g,二者比值达2.58。以DH-G-42为母本、DH-7-9为父本,构建了含190个单株的F2遗传作图群体,利用SSR和SRAP标记技术绘制遗传连锁图谱,该图谱共包含20个连锁群,涉及128个SSR标记和100个SRAP标记,图谱总长1546.6cM,标记间平均图距为6.78cM。本研究共检测到3个与千粒重性状相关的QTL,分别位于A9和C1连锁群,其中qSW-A9-1和qSW-A9-2贡献率分别达到10.98%和27.45%,均可视为控制粒重的主效QTL。本研究为后续进行油菜千粒重性状QTL的精细定位分析、分子标记辅助选择育种及新基因的克隆等奠定了基础。  相似文献   

8.
利用绿豆(Vigna radiata)品种苏绿16-10和潍绿11杂交构建的F2和F3群体发掘调控绿豆产量相关性状的遗传位点。同时对绿豆产量相关性状进行表型鉴定和相关性分析,并利用构建的遗传连锁图谱进行QTL定位。结果表明,单株产量与单株荚数、单荚粒数、百粒重和分枝数均呈正相关。单株产量与单株荚数的相关性最高,这2个性状在F2和F3群体中的相关系数分别为0.950和0.914。在F2群体中,共检测到8个与产量性状相关的QTL位点,其中与单株荚数、单荚粒数和单株产量相关的QTL位点各1个,分别解释11.09%(qNPP3)、17.93%(qNSP3)和14.18%(qYP3)的表型变异;2个与分枝数相关的QTL位点qBMS3和qBMS11,分别解释18.51%和7.06%的表型变异;3个与百粒重相关的QTL位点qHSW3、qHSW7和qHSW10,分别解释5.33%、46.07%和4.24%的表型变异。在F3群体中,qNSP3和qHSW7再次被检测到,表明这2个QTLs有较好的遗传稳定性。同时,开发了1个与百粒重主效QTLqHSW7紧密连锁的InDel标记R7-13.4,并利用自然群体对...  相似文献   

9.
花色性状是甘蓝的一个重要性状,在吸引和指示传粉者、保护花器官、维持花组织能量平衡、测定品种异交率及纯度、检测性状转移等方面有重要作用。为了鉴定控制和影响甘蓝花色的遗传位点和候选基因,本研究利用芥蓝(白花)与野生甘蓝(黄花)构建了F2分离群体,并分别利用基于分子标记遗传连锁图谱和基于SNP芯片分析的QTL扫描技术,对甘蓝花色性状进行QTL定位。本研究结论如下:甘蓝花色性状由C03染色体上一个部分显性主效QTL位点控制,并受到C02上一个微效加性QTL的影响;主效QTL候选基因BoCCD4编码区778~780 bp处3个碱基的插入极可能导致BoCCD4功能丧失,从而呈现黄色表型。本研究确认了控制甘蓝白花性状的主效QTL位置,鉴定到了候选基因并发现了与文献报道不同的新变异位点,为进一步了解芸薹属物种花色的遗传和变异提供了新的数据。  相似文献   

10.
对内脏器官重量性状的QTL定位研究,所见报道不多;对于猪的繁殖性状,尚需做进一步的探讨。本研究在总共214头(180头F2个体)组成的资源家系中,在猪的SSC4、SSC6、SSC7、SSC8 和 SSC13上共选取39个微卫星标记,检测了8种内脏器官的重量性状:心重 (HW)、肺重 (LW)、肝 胆重 (LGW)、脾重 (SPW)、胃重 (STW)、小肠重(SIW)、大肠重(LIW) 和肾重(KW);其他一些胴体性状:胴体长性状1(自第一颈椎,CL1)、胴体长性状2(自第一胸椎,CL2)、肋骨数(RNS)和繁殖性状乳头数(TNS)的QTL定位。结果表明,检测到3个染色体极显著水平的QTL(P≤0.01),它们是HW QTL定位在SSC6上30 cM处,RNS QTL定位在SSC7上115 cM处和TNS QTL定位在SSC7上 110 cM处;另外6个染色体显著水平的QTL(P≤0.05)是:LW(SSC13上119 cM处)、LGW(SSC6上94 cM处)、SPW(SSC8上106 cM处)、SIW(SSC 4上0 cM处)、LIW(SSC 4上170 cM 处)和TNS(SSC 6上95 cM处)。上述QTL解释的表型变异从 0.04% 到 14.06%,有些位点的 QTL 可以解释表型变异的 10%以上,如 HW 的 QTL 解释表型变异的9.52%、SIW的QTL解释表型变异的13.47%、定位在SSC6上的TNS QTL解释表型变异的14.06%,而定位在 SSC7上的TNS QTL解释表型变异的11.30%。多数内脏器官重量性状的QTL定位结果未见报道。胴体长未见显著水平的QTL,而在SSC7上定位染色体极显著水平的肋骨数QTL。  相似文献   

11.
唐国庆  李学伟 《遗传学报》2006,33(3):220-229
一种扩展的方法能够在多个世代对具有多个数量性状位点的多性状选择进行最优化。这种方法的基础是在目标雨数中用综合遗传值替代单个性状遗传值,并在整个规划期内最大化所有世代选择反应的加权和。利用多阶段系统优化控制理论,整个最优化问题通过一个向前和向后的迭代循环解决。用一个实际育种猪群的育种参数来评价该方法的选择效果,并和标准QTL选择和常规BLUP选择进行比较。结果表明,优化选择要优于标准QTL选择和常规BLUP选择。经济权重对优化选择的影响较明显,随着达100kg日龄赋予的经济权重的增加,优化选择的优势越明显。优化选择通过两种方式增加总选择反应:1)选择早期减少一部分QTL选择反应;2)对达100kgH龄给予更大的权重。选择后期优化累积贴现选择比优化终端选择给予达100kgH龄更大的权重。  相似文献   

12.
Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci   总被引:49,自引:2,他引:47  
C. Jiang  Z. B. Zeng 《Genetics》1995,140(3):1111-1127
We present in this paper models and statistical methods for performing multiple trait analysis on mapping quantitative trait loci (QTL) based on the composite interval mapping method. By taking into account the correlated structure of multiple traits, this joint analysis has several advantages, compared with separate analyses, for mapping QTL, including the expected improvement on the statistical power of the test for QTL and on the precision of parameter estimation. Also this joint analysis provides formal procedures to test a number of biologically interesting hypotheses concerning the nature of genetic correlations between different traits. Among the testing procedures considered are those for joint mapping, pleiotropy, QTL by environment interaction, and pleiotropy vs. close linkage. The test of pleiotropy (one pleiotropic QTL at a genome position) vs. close linkage (multiple nearby nonpleiotropic QTL) can have important implications for our understanding of the nature of genetic correlations between different traits in certain regions of a genome and also for practical applications in animal and plant breeding because one of the major goals in breeding is to break unfavorable linkage. Results of extensive simulation studies are presented to illustrate various properties of the analyses.  相似文献   

13.
14.
A. B. Korol  Y. I. Ronin    V. M. Kirzhner 《Genetics》1995,140(3):1137-1147
An approach to increase the resolution power of interval mapping of quantitative trait (QT) loci is proposed, based on analysis of correlated trait complexes. For a given set of QTs, the broad sense heritability attributed to a QT locus (QTL) (say, A/ a) is an increasing function of the number of traits. Thus, for some traits x and y, H(xy)(2) (A/ a) >/= H(x)(2) (A/ a). The last inequality holds even if y does not depend on A/ a at all, but x and y are correlated within the groups AA, Aa and aa due to nongenetic factors and segregation of genes from other chromosomes. A simple relationship connects H(2) (both in single trait and two-trait analysis) with the expected LOD value, ELOD = -1/2N log(1 - H(2)). Thus, situations could exist that from the inequality H(xy)(2) (A/ a) >/= H(x)(2) (A/ a) a higher resolution is provided by the two-trait analysis as compared to the single-trait analysis, in spite of the increased number of parameters. Employing LOD-score procedure to simulated backcross data, we showed that the resolution power of the QTL mapping model can be elevated if correlation between QTs is taken into account. The method allows us to test numerous biologically important hypotheses concerning manifold effects of genomic segments on the defined trait complex (means, variances and correlations).  相似文献   

15.
16.
17.
18.
《Protoplasma》1935,23(1):292-293
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号