首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.  相似文献   

2.

Background

Antigen-derived HLA class I-restricted peptides can generate specific CD8+ T-cell responses in vivo and are therefore often used as vaccines for patients with cancer. However, only occasional objective clinical responses have been reported suggesting the necessity of CD4+ T-cell help and possibly antibodies for the induction of an effective anti-tumor immunity in vivo. The SSX2 gene encodes the cancer testis antigen (CTA) HOM-MEL-40/SSX2, which is frequently expressed in a wide spectrum of cancers. Both humoral and cellular immune responses against SSX2 have been described making SSX2 an attractive candidate for vaccine trials.

Methods

SYFPEITHI algorithm was used to predict five pentadecamer peptides with a high binding probability for six selected HLA-DRB1 subtypes (*0101, *0301, *0401, *0701, *1101, *1501) which are prevalent in the Caucasian population.

Results

Using peripheral blood cells of 13 cancer patients and 5 healthy controls, the HOM-MEL-40/SSX2-derived peptide p101-111 was identified as an epitope with dual immunogenicity for both CD4+ helper and cytotoxic CD8+ T cells. This epitope also reacted with anti-SSX2 antibodies in the serum of a patient with breast cancer. Most remarkably, SSX2/p101-111 simultaneously induced specific CD8, CD4, and antibody responses in vitro.

Conclusions

p101-111 is the first CTA-derived peptide which induces CD4+, CD8+, and B-cell responses in vitro. This triple-immunogenic peptide represents an attractive vaccine candidate for the induction of effective anti-tumor immunity.  相似文献   

3.

Background

While influenza vaccination results in protective antibodies against primary infections, clearance of infection is primarily mediated through CD8+ T cells. Studying the CD8+ T cell response to influenza epitopes is crucial in understanding the disease associated morbidity and mortality especially in at risk populations such as the elderly. We compared the CD8+ T cell response to immunodominant and subdominant influenza epitopes in HLA-A2+ control, adult donors, aged 21-42, and in geriatric donors, aged 65 and older.

Results

We used a novel artificial Antigen Presenting Cell (aAPC) based stimulation assay to reveal responses that could not be detected by enzyme-linked immunosorbent spot (ELISpot). 14 younger control donors and 12 geriatric donors were enrolled in this study. The mean number of influenza-specific subdominant epitopes per control donor detected by ELISpot was only 1.4 while the mean detected by aAPC assay was 3.3 (p = 0.0096). Using the aAPC assay, 92% of the control donors responded to at least one subdominant epitopes, while 71% of control donors responded to more than one subdominant influenza-specific response. 66% of geriatric donors lacked a subdominant influenza-specific response and 33% of geriatric donors responded to only 1 subdominant epitope. The difference in subdominant response between age groups is statistically significant (p = 0.0003).

Conclusion

Geriatric donors lacked the broad, multi-specific response to subdominant epitopes seen in the control donors. Thus, we conclude that aging leads to a decrease in the subdominant influenza-specific CTL responses which may contribute to the increased morbidity and mortality in older individuals.  相似文献   

4.

Background

Immunity against the bovine protozoan parasite Theileria parva has previously been shown to be mediated through lysis of parasite-infected cells by MHC class I restricted CD8+ cytotoxic T lymphocytes. It is hypothesized that identification of CTL target schizont antigens will aid the development of a sub-unit vaccine. We exploited the availability of the complete genome sequence data and bioinformatics tools to identify genes encoding secreted or membrane anchored proteins that may be processed and presented by the MHC class I molecules of infected cells to CTL.

Results

Of the 986 predicted open reading frames (ORFs) encoded by chromosome 1 of the T. parva genome, 55 were selected based on the presence of a signal peptide and/or a transmembrane helix domain. Thirty six selected ORFs were successfully cloned into a eukaryotic expression vector, transiently transfected into immortalized bovine skin fibroblasts and screened in vitro using T. parva-specific CTL. Recognition of gene products by CTL was assessed using an IFN-γ ELISpot assay. A 525 base pair ORF encoding a 174 amino acid protein, designated Tp2, was identified by T. parva-specific CTL from 4 animals. These CTL recognized and lysed Tp2 transfected skin fibroblasts and recognized 4 distinct epitopes. Significantly, Tp2 specific CD8+ T cell responses were observed during the protective immune response against sporozoite challenge.

Conclusion

The identification of an antigen containing multiple CTL epitopes and its apparent immunodominance during a protective anti-parasite response makes Tp2 an attractive candidate for evaluation of its vaccine potential.  相似文献   

5.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

6.
The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.  相似文献   

7.
8.

Background

Allergen-induced imbalance of specific T regulatory (Treg) cells and T helper 2 cells plays a decisive role in the development of immune response against allergens.

Objective

To evaluate effects and potential mechanisms of DNA vaccine containing ovalbumin (OVA) and Fc fusion on allergic airway inflammation.

Methods

Bronchoalveolar lavage (BAL) levels of inflammatory mediators and leukocyte infiltration, expression of CD11c +CD80 + and CD11c +CD86 + co-stimulatory molecules in spleen dendritic cells (DCs), circulating CD4 + and CD8 + T cells, Foxp3+ in spleen CD4 + T cells and spleen CD4 + T cells were measured in OVA-sensitized and challenged animals pretreated with pcDNA, OVA-pcDNA, Fc-pcDNA, and OVA-Fc-pcDNA.

Results

OVA-Sensitized and challenged mice developed airway inflammation and Th2 responses, and decreased the proliferation of peripheral CD4 +and CD8 + T cells and the number of spleen Foxp3 + Treg. Those changes with increased INF-γ production and reduced OVA-specific IgE production were protected by the pretreatment with OVA-Fc-pcDNA.

Conclusion

DNA vaccine encoding both Fc and OVA showed more effective than DNA vaccine encoding Fc or OVA alone, through the balance of DCs and Treg.  相似文献   

9.
10.
Yin  Xiuchen  Zhang  Shumei  Gao  Youlan  Li  Jinzhe  Tan  Shuyi  Liu  Hongyu  Wu  Xiaoying  Chen  Yuhuan  Liu  Ming  Zhang  Yun 《Virology journal》2012,9(1):1-7

Background

Ebola viruses (EBOVs) cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs).

Results

Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire) GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV), GPCAGDFAF and LYDRLASTV (Zaire EBOV) could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma.

Conclusion

Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.  相似文献   

11.

Background

Hantaan virus (HTNV) infection in humans is a serious public health concern in Asia. A potent T cell activation peptide vaccine from HTNV structure protein represents a promising immunotherapy for disease control. However, the T cell epitopes of the HTNV restricted by the HLA alleles and the role of epitope-specific T cell response after HTNV infection remain largely unexplored.

Methodology/Principal Findings

Five well-conserved novel CD8+ T-cell epitopes of the HTNV nucleoprotein restricted by the most popular HLA alleles in Chinese Han population were defined with interferon-γ enzyme-linked immunospot assay in 37 patients infected with HTNV during hospitalization. Two epitopes aa129–aa137 and aa131–aa139 restricted by HLA-A2 and B35, respectively, were selected to evaluate the epitope-specific CD8+ T-cell response. HLA-peptide pentamer complex staining showed that the frequency of single epitope-specific CD8+ T cell could be detected in patients (95% confidence interval for aa129–aa137: 0.080%–0.208%; for aa131–aa139: 0.030%–0.094%). The frequency of epitope-specific pentamer+ CD8+ T-cell response was much higher in mild/moderate patients than in severe/critical ones at the acute stage of the disease. Moreover, the frequency of epitope-specific CD8+ T cells at acute stage was inversely associated with the peak level of serum creatinine and was positively associated with the nadir platelet counts during the hospitalization. The intracellular cytokine staining and the proliferation assay showed that the effective epitope-specific CD8+ T cells were characterized with the production of interferon-γ, expression of CD69 and the strong capacity of proliferation.

Conclusion/Significance

The novel HLA class I restricted HTNV nucleoprotein epitopes-specific CD8+ T-cell responses would be closely related with the progression and the severity of the disease, which could provide the first step toward effective peptide vaccine development against HTNV infection in humans.  相似文献   

12.

Background

The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.

Methodology

The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.

Findings

Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.

Conclusion

Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.  相似文献   

13.

Background

Despite inducing a sustained increase in CD4+ T cell counts, intermittent recombinant IL-2 (rIL-2) therapy did not confer a better clinical outcome in HIV-infected patients enrolled in large phase III clinical trials ESPRIT and SILCAAT. Several hypotheses were evoked to explain these discrepancies. Here, we investigated the impact of low and high doses of IL-2 in Rhesus macaques of Chinese origin infected with SIVmac251 in the absence of antiretroviral therapy (ART).

Results

We demonstrated that rIL-2 induced a dose dependent expansion of CD4+ and CD8+ T cells without affecting viral load. rIL-2 increased CD4 and CD8 Treg cells as defined by the expression of CD25highFoxP3+CD127low. We also showed that rIL-2 modulated spontaneous and Fas-mediated CD4+ and CD8+ T cell apoptosis. The higher dose exhibited a dramatic pro-apoptotic effect on both CD4+ and CD8+ T cell populations. Finally, all the animals treated with rIL-2 developed a wasting syndrome in the month following treatment simultaneously to a dramatic decrease of circulating effector T cells.

Conclusion

These data contribute to the understanding of the homeostatic and dosage effects of IL-2 in the context of SIV/HIV infection.  相似文献   

14.

Introduction

The present study was devised to understand the role of systemic indoleamine 2,3-dioxygenase (IDO) in the tolerance induction for orally tolerized mice in collagen-induced arthritis (CIA). We examined whether IDO-expressing dendritic cells (DCs) are involved in the generation of CD4+CD25+ regulatory T cells during the induction of oral tolerance in a murine CIA model.

Methods

Type II collagen was fed six times to DBA/1 mice beginning 2 weeks before immunization, and the effect on arthritis was assessed. To examine the IDO expression, the DCs of messenger RNA and protein were analyzed by RT-PCR and Flow cytometry. In addition, a proliferative response assay was also carried out to determine the suppressive effects of DCs through IDO. The ability of DCs expressing IDO to induce CD4+CD25+ T regulatory cells was examined.

Results

CD11c+ DCs in Peyer's patches from orally tolerized mice expressed a higher level of IDO than DCs from nontolerized CIA mice. IDO-expressing CD11c+ DCs were involved in the suppression of type II collagen-specific T-cell proliferation and in the downregulation of proinflammatory T helper 1 cytokine production. The suppressive effect of IDO-expressing CD11c+ DCs was mediated by Foxp3+CD4+CD25+ regulatory T cells.

Conclusion

Our data suggest that tolerogenic CD11c+ DCs are closely linked with the induction of oral tolerance through an IDO-dependent mechanism and that this pathway may provide a new therapeutic modality to treat autoimmune arthritis.  相似文献   

15.

Background

Cancer vaccines reproducibly cure laboratory animals and reveal encouraging trends in brain tumor (glioma) patients. Identifying parameters governing beneficial vaccine-induced responses may lead to the improvement of glioma immunotherapies. CD103+ CD8 T cells dominate post-vaccine responses in human glioma patients for unknown reasons, but may be related to recent thymic emigrant (RTE) status. Importantly, CD8 RTE metrics correlated with beneficial immune responses in vaccinated glioma patients.

Methods

We show by flow cytometry that murine and human CD103+ CD8 T cells respond better than their CD103? counterparts to tumor peptide-MHC I (pMHC I) stimulation in vitro and to tumor antigens on gliomas in vivo.

Results

Glioma responsive T cells from mice and humans both exhibited intrinsic de-sialylation-affecting CD8 beta. Modulation of CD8 T cell sialic acid with neuraminidase and ST3Gal-II revealed de-sialylation was necessary and sufficient for promiscuous binding to and stimulation by tumor pMHC I. Moreover, de-sialylated status was required for adoptive CD8 T cells and lymphocytes to decrease GL26 glioma invasiveness and increase host survival in vivo. Finally, increased tumor ST3Gal-II expression correlated with clinical vaccine failure in a meta-analysis of high-grade glioma patients.

Conclusions

Taken together, these findings suggest that de-sialylation of CD8 is required for hyper-responsiveness and beneficial anti-glioma activity by CD8 T cells. Because CD8 de-sialylation can be induced with exogenous enzymes (and appears particularly scarce on human T cells), it represents a promising target for clinical glioma vaccine improvement.  相似文献   

16.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

17.

Background

The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope.

Results

Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi.

Conclusions

We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI epitope, will elicit better T-CD8+ responses to the latter. It is likely that additional antigens and recombinant virus formulations will be necessary to generate a protective response.  相似文献   

18.

Introduction

Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease, which can affect different organs. Increased proportions of CD4+CD25-Foxp3+ T cells have been described in SLE patients. The exact role of this cell population in SLE patients still remains unclear. We therefore analyzed this T cell subset in a large cohort of SLE patients with different organ manifestations.

Methods

Phenotypic analyses, proportions and absolute cell numbers of CD4+CD25-Foxp3+ T cells were determined by flow cytometry (FACS) in healthy controls (HC) (n = 36) and SLE patients (n = 61) with different organ manifestations. CD4+CD25-Foxp3+ T cells were correlated with clinical data, the immunosuppressive therapy and different disease activity indices. In patients with active glomerulonephritis, CD4+CD25-Foxp3+ T cells were analyzed in urine sediment samples. Time course analyses of CD4+CD25-Foxp3+ T cells were performed in patients with active disease activity before and after treatment with cyclophosphamide and prednisone.

Results

CD4+CD25-Foxp3+ T cells were significantly increased in active SLE patients and the majority expressed Helios. Detailed analysis of this patient cohort revealed increased proportions of CD4+CD25-Foxp3+ T cells in SLE patients with renal involvement. CD4+CD25-Foxp3+ T cells were also detected in urine sediment samples of patients with active glomerulonephritis and correlated with the extent of proteinuria.

Conclusion

CD4+CD25-Foxp3+ T cells resemble regulatory rather than activated T cells. Comparative analysis of CD4+CD25-Foxp3+ T cells in SLE patients revealed a significant association of this newly described cell population with active nephritis. Therefore CD4+CD25-Foxp3+ T cells might serve as an important tool to recognize and monitor SLE patients with renal involvement.  相似文献   

19.

Background

Previously we described a system whereby human peripheral blood T cells stimulated for 8 days in a cytokine cocktail acquired effector function for contact-dependent induction of proinflammatory cytokines from monocytes. We termed these cells cytokine-activated (Tck) cells and found that the signalling pathways elicited in the responding monocytes were identical whether they were placed in contact with Tck cells or with T cells isolated from rheumatoid arthritis (RA) synovial tissue.

Methods

Here, using magnetic beads and fluorescence-activated cell sorting, we extensively phenotype the Tck effector cells and conclude that effector function resides within the CD4+CD45RO+, CCR7-, CD49dhigh population, and that these cells are derived from the effector memory CD4+ T cells in resting blood.

Results

After stimulation in culture, these cells produce a wide range of T-cell cytokines, undergo proliferation and differentiate to acquire an extensively activated phenotype resembling RA synovial T cells. Blocking antibodies against CD69, CD18, or CD49d resulted in a reduction of tumour necrosis factor-α production from monocytes stimulated with CD4+CD45RO+ Tck cells in the co-culture assay. Moreover, blockade of these ligands also resulted in inhibition of spontaneous tumour necrosis factor-α production in RA synovial mononuclear cell cultures.

Conclusion

Taken together, these data strengthen our understanding of T-cell effector function, highlight the multiple involvement of different cell surface ligands in cell-cell contact and, provide novel insights into the pathogenesis of inflammatory RA disease.  相似文献   

20.
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号