首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline nuclease (AN) of the Autographa californica multiple-capsid nucleopolyhedrovirus (AcMNPV) (open reading frame 133) was expressed in recombinant baculovirus as a His(6)-tagged fusion and purified by sequential chromatography on Ni-NTA-agarose, DEAE-Toyopearl, and heparin-Sepharose. At all stages of purification, AcMNPV AN was found to copurify with a 44-kDa polypeptide which was identified as the baculovirus single-stranded DNA (ssDNA)-binding (SSB) protein, LEF-3. Sedimentation analysis in glycerol gradients of highly purified samples suggested that AN and LEF-3 are associated in a complex (designated *AN/L3), predominantly as heterodimers, although oligomeric forms containing both proteins were evident. In reactions with single- or double-stranded 62-mer oligonucleotides that were labeled with (32)P at the 5' or 3' ends, *AN/L3 carried out exonucleolytic hydrolysis of both substrates exclusively in a 5'-->3' direction. Saturation of ssDNA with an excess of LEF-3 prior to the addition of *AN/L3 resulted in a marked decrease in the rate of ssDNA hydrolysis. This suggests that excess LEF-3 may protect ssDNA from digestion by a AN-LEF-3 complex, thus regulating its activity in infected cells. The association of baculovirus AN with the viral SSB LEF-3 and the 5'-->3' exonuclease activity of this complex suggests that AN and LEF-3 may participate in homologous recombination of the baculovirus genome in a manner similar to that of exonuclease (Redalpha) and DNA-binding protein (Redbeta) of the Red-mediated homologous recombination system of bacteriophage lambda.  相似文献   

2.
3.
Haldar D  Acharya S  Rao MR 《Biochemistry》2002,41(39):11628-11641
Nucleases are involved in the processing of various intermediates generated during crucial DNA metabolic processes such as replication, repair, and recombination and also during maturation of RNA precursors. An endonuclease, degrading specifically single-stranded circular DNA, was identified earlier in rat testis nuclear extract while purifying a strand-transfer activity. We are now reporting the purification of this endonuclease, which is a monomeric 42 kDa protein, from rat testis to near-homogeneity. In addition to degrading single-stranded circular DNA, it nicks supercoiled plasmid DNA to generate relaxed DNA and does not act on linear single-stranded or double-stranded DNA. It also makes specific incisions at the single-strand/duplex junction of pseudo-Y, 3'- and 5'-overhangs and 3'- and 5'-flap structures. Other structures such as mismatch, insertion loop, and Holliday junction are not substrates for the testis endonuclease. In contrast to FEN1, the testis endonuclease makes asymmetric incisions on both strands of the branched structures, and free single-stranded ends are not necessary for the structure-specific incisions. Neither 5'-3' nor 3'-5' exonuclease activity is associated with the testis endonuclease. The amino acid sequences of tryptic peptides of the 42 kDa endonuclease show near-identity to polypyrimidine-tract binding protein (PTB) that is involved in the regulation of splicing of eukaryotic mRNA. The significance of the results on the association of structure-specific endonucleae activities with PTB-related protein is discussed.  相似文献   

4.
Five distinct DNA replicating intermediates have been separated from lysates of bacteriophage G4-infected cells pulse-labelled during the period of replicative form synthesis using propidium diiodide/caesium chloride gradients. These are a partially single-stranded theta structure that is labelled in both the viral and complementary DNA strands; partially single-stranded circles, some with an unfinished viral DNA strand (25%) and some with an unfinished complementary DNA strand (75%); replicative form II(RFII) and replicative form I(RFI) DNA labelled only in the complementary DNA strand. To explain the pulse-label data a model is proposed in which G4 replicative form replication takes place by a displacement mechanism in which synthesis of the new viral DNA strand displaces the old viral DNA strand as a single-stranded DNA loop (D-loop) and when the displacement reaches half way round the molecule (the origin of synthesis of the G4 viral and complementary DNA strands are on opposite sides of the genome, Martin &; Godson 1977) synthesis of the complementary DNA strand starts, but in the opposite direction. Strand separation of the parent helix runs ahead of DNA synthesis, releasing two partially single-stranded circles from the replicating structure which then complete their replication as free single-stranded DNA circles. No evidence was found to support a rolling circle displacement mechanism of G4 replicative form synthesis.  相似文献   

5.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

6.
The repair of some types of DNA double-strand breaks is thought to proceed through DNA flap structure intermediates. A DNA flap is a bifurcated structure composed of double-stranded DNA and a displaced single-strand. To identify DNA flap cleaving activities in mammalian nuclear extracts, we created an assay utilizing a synthetic DNA flap substrate. This assay has allowed the first purification of a mammalian DNA structure-specific nuclease. The enzyme described here, flap endonuclease-1 (FEN-1), cleaves DNA flap strands that terminate with a 5' single-stranded end. As expected for an enzyme which functions in double-strand break repair flap resolution, FEN-1 cleavage is flap strand-specific and independent of flap strand length. Furthermore, efficient flap cleavage requires the presence of the entire flap structure. Substrates missing one strand are not cleaved by FEN-1. Other branch structures, including Holliday junctions, are also not cleaved by FEN-1. In addition to endonuclease activity, FEN-1 has a 5'-3' exonuclease activity which is specific for double-stranded DNA. The endo- and exonuclease activities of FEN-1 are discussed in the context of DNA replication, recombination and repair.  相似文献   

7.
The replication of bacteriophage phi X 174 replicative-form DNA has been studied by structural analysis of pulse-labeled replicative-intermediate molecules. Such intermediates were identified by pulse-labeling with [13H]thymidine and separated into four major fractions (A, B, C, and D) in a propidium diiodide-cesium chloride buoyand density gradient. Sedimentation analysis of each of these fractions suggests the following features of phi X replicative-form DNA replication in vivo. (i) At the end of one cycle of replication, one daughter replicative form (RFII) contains a nascent plus (+) strand of the unit viral length, and the other daughter RFII contains small fragments of nascent minus (-) strand. (ii) Asymmetry is also associated with production of the first supercoiled RFI after addition of pulse label in that only the minus strand becomes radioactive. (iii) A supercoiled DNA (RFI') seems to occur in vivo. This DNA is observed at a position of greater density in a propidium diiodide-cesium chloride buoyant density gradient than normal RFI. (iv) A novel DNA component is observed, at a density greater than RFI, which releases, in alkali, a plus strand longer (1.5 to 1.7 times) than the unit viral length. These results are discussed in terms of the possible sequence of events in phi X 174 replicative-form replication in vivo.  相似文献   

8.
Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.  相似文献   

9.
Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs are shown to be A* protein-DNA complexes by electron microscopy using the protein labeling technique of Wu and Davidson (1). The linear double-stranded RFIII DNA molecule carries at one end a covalently attached A* protein whereas at the other end of the molecule the single-stranded termini are covalently linked to each other. The structure of the RFIII DNA shows its way of formation. The described properties of the A* protein indicate the way the larger A protein functions in the termination step of the rolling-circle type of phi X174 DNA replication.  相似文献   

10.
The parCBA operon of the 3.2-kb stabilization region of plasmid RK2 encodes three cotranslated proteins. ParA mediates site-specific recombination to resolve plasmid multimers, ParB has been shown to be a nuclease, and the function of ParC is unknown. In this study ParB was overexpressed by cotranslation with ParC in Escherichia coli by using a plasmid construct that contained the parC and parB genes under the control of the T7 promoter. Purification was achieved by treatment of extracts with Polymin P, followed by ammonium sulfate precipitation and heparin and ion-exchange chromatography. Sizing-column analysis indicated that ParB exists as a monomer in solution. Analysis of the enzymatic properties of purified ParB indicated that the protein preferentially cleaves single-stranded DNA. ParB also nicks supercoiled plasmid DNA preferably at sites with potential single-stranded character, like AT-rich regions and sequences that can form cruciform structures. ParB also exhibits 5'-->3' exonuclease activity. This ParB activity on a 5'-end-labeled, double-stranded DNA substrate produces a 3', 5'-phosphorylated dinucleotide which is further cleaved to a 3', 5'-phosphorylated mononucleotide. The role of the ParB endonuclease and exonuclease activities in plasmid RK2 stabilization remains to be determined.  相似文献   

11.
Origin and direction phiX174 double- and single-stranded DNA synthesis   总被引:9,自引:0,他引:9  
The origin and direction of both φX174 double-stranded and single-stranded DNA synthesis has been determined by pulsing replicating viral DNA molecules with [3H]thymidine for periods of less than one round of DNA synthesis and examining distribution of activity in the Haemophilus influenzae restriction endonuclease (Hin) DNA fragments of these molecules. In early RFI and RFII DNA intermediates in double-stranded DNA replication, gradients of label were observed which started in the R3 fragment (cistron A) and increased towards the R4 fragment (cistron H). The origin of synthesis is near the R4/R3 junction of the R3 fragment. Thus, φX174 double-stranded DNA synthesis proceeds clockwise around the genetic map (5′ → 3′), in one direction only and starting in the region of cistron A, a conclusion consistent with the genetic experiments of Baas &; Jansz (1972). Similar experiments with the gapped late RFII DNA molecules that have just completed a round of single-stranded viral DNA synthesis demonstrated that φX174 single-stranded DNA synthesis also has a single origin of replication in the region of cistron A, and that the synthesis moves in the 5′ → 3′ direction, around the genetic map. The gap in both the early and the late RFII DNA molecules also appears to be in the R3 fragment containing cistron A.  相似文献   

12.
Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein.   总被引:14,自引:1,他引:13       下载免费PDF全文
RepC protein encoded by plasmid pT181 has single-stranded endonuclease and topoisomerase-like activities. These activities may be involved in the initiation (and termination) of pT181 replication by a rolling circle mechanism. RepC protein cleaves the bottom strand of DNA within the origin of replication at a single, specific site when the DNA is in the supercoiled or linear (double or single-stranded) form. We have found that RepC protein will also cleave single-stranded DNA at sites other than the origin of replication. We have mapped the secondary cleavage sites on pT181 DNA. When the DNA is in the supercoiled, or linear, double-stranded form, only the primary site within the origin is cleaved. However, when the DNA is present in the single-stranded form, several strong and weak cleavage sites are observed. The DNA sequence at these cleavage sites shows a strong similarity with the primary cleavage site. The presence of Escherichia coli SSB protein inhibited cleavage at all of the secondary nick sites while the primary nick site remained susceptible to cleavage.  相似文献   

13.
The replication of herpes simplex virus type 1 (HSV-1) DNA is associated with a high degree of homologous recombination. While cellular enzymes may take part in mediating this recombination, we present evidence for an HSV-1-encoded recombinase activity. HSV-1 alkaline nuclease, encoded by the UL12 gene, is a 5'-->3' exonuclease that shares homology with Redalpha, commonly known as lambda exonuclease, an exonuclease required for homologous recombination by bacteriophage lambda. The HSV-1 single-stranded DNA binding protein ICP8 is an essential protein for HSV DNA replication and possesses single-stranded DNA annealing activities like the Redbeta synaptase component of the phage lambda recombinase. Here we show that UL12 and ICP8 work together to effect strand exchange much like the Red system of lambda. Purified UL12 protein and ICP8 mediated the complete exchange between a 7.25-kb M13mp18 linear double-stranded DNA molecule and circular single-stranded M13 DNA, forming a gapped circle and a displaced strand as final products. The optimal conditions for strand exchange were 1 mM MgCl(2), 40 mM NaCl, and pH 7.5. Stoichiometric amounts of ICP8 were required, and strand exchange did not depend on the nature of the double-stranded end. Nuclease-defective UL12 could not support this reaction. These data suggest that diverse DNA viruses appear to utilize an evolutionarily conserved recombination mechanism.  相似文献   

14.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

15.
A second form of single-strand specific endonuclease, which is stable to heating up to 74 degrees C and does not bind strongly to phosphocellulose, has been partially purified from extracts of mycelia of wild-type Neurospora crassa. The endonuclease is associated with an equally heat-stable exonuclease which degrades linear but not circular double-stranded DNA and does not attack double-stranded RNA. The exonuclease probably also degrades single-stranded DNA. Both endonuclease and exonuclease activities are inhibited by 0.1-0.5 mM ATP. The exonuclease is preferentially inhibited by a variety of agents and preferentially inactivated by trypsin. A DNA-unwinding activity has also been detected in the nuclease preparation. Protease(s) present in the nuclease preparation destroy the DNA-unwinding and exonuclease activities on incubation at 37 degrees C, but do not affect the endonuclease activity. However, the heat-stability and chromatographic properties of the endonuclease are affected by this treatment. The altered properties of the endonuclease are very similar to those of the single-strand specific endonuclease which has been previously described. The combined nuclease activities of the unaltered preparational make up a putative recombination nuclease of N. crassa.  相似文献   

16.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

17.
Recombination-dependent replication is an essential housekeeping function in prokaryotes and eukaryotes, serving, for example, to restart DNA replication after the repair of a double-strand break. Little is known about the interplay between the recombination and replication machinery when recombination intermediates are used as substrates for DNA replication. We show here that recombination intermediates formed between linear duplex and supercoiled plasmid DNAs are substrates for a generalized strand displacement DNA synthesis reaction in which the 3'-OH of the invading strand in the recombination intermediate is used as a primer. DNA synthesis is driven by negative superhelicity and is inhibited if disassembly of the RecA filament is prevented. Thus, assembly and disassembly of RecA filaments in the same direction facilitates filament clearance from the 3'-end of the invading strand, allowing DNA synthesis to occur from recombination intermediates.  相似文献   

18.
Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of λ exonuclease and RecJf, for the selective removal of linear DNA from such mixtures. λ exonuclease digests one strand of linear duplex DNA in the 5′ to 3′ direction, whereas RecJf, a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of λ exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.  相似文献   

19.
The review describes the current state of studying the baculovirus DNA replication. The structural organization of replication initiation sites and replication intermediates are considered. Attention is focused on virus replication factors, including DNA polymerase, helicase, IE-1, LEF-1, LEF-2, and LEF-3.  相似文献   

20.
Mikhailov  V. S. 《Molecular Biology》2003,37(2):250-259
The review describes the current state of studying the baculovirus DNA replication. The structural organization of replication initiation sites and replication intermediates are considered. Attention is focused on virus replication factors, including DNA polymerase, helicase, IE-1, LEF-1, LEF-2, and LEF-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号