首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal perikarya of the procerebrum of Helix and Limax are generally naked and lie side by side. The cell mass contains large numbers of axosomatic and axoaxonic synapses represented by boutons of two types; dense core vesicles (800-1200 A, in diameter) being characteristic of the first type and clusters of electron lucent vesicles (500-800 A) of the second. Endings of the two types occur also in the terminal mass of the neuropile while the internal mass contains peculiar axonal enlargements filled with fine twisted tubuli. Axons containing dense core vesicles seem to correspond to varicose monoaminergic fibres detected by a fluorescent histochemical method.  相似文献   

2.
Summary The central body in the median protocerebrum of the brain of the crayfish Cherax destructor is a distinctive area of dense neuropile, the nerve fibres of which contain three main types of vesicles: electronlucent vesicles (diameter 35 nm), dense-core vesicles (diameter 64 nm), and large structured dense-core vesicles (diameter 98 nm, maximum 170 nm). Different vesicle types were found together in the same neurons. Electronlucent vesicles were seen at presynaptic sites and rarely observed in the state of exocytosis. Exocytosis of densecore and structured dense-core vesicles was a regular feature on non-synaptic release sites either close to, or at some distance from pre- and subsynaptic sites. Non-synaptic exocytotic sites are more often observed than chemical synapses. Different forms of exocytosis seen at non-synaptic sites included the release of single densecore vesicles, packets of dense-core vesicles, and rows of dense-core vesicles lined up along cell membranes and around fibre invaginations. Swelling and the enhanced electron density of extracellular non-synaptic spaces may mark the positions of prior exocytotic events. In vitro treatment of the brain with tannic acid buffer solution followed by conventional double fixation resulted in the augmentation of non-synaptic exocytosis. Electron microscopy of proctolin- and serotonin-immunoreactive nerve fibres shows them to contain dense-core and electron-lucent vesicles and to be surrounded by many unlabelled profiles similarly laden with dense-core vesicles and electron-lucent vesicles, indicating the presence of other, not yet identified, neuroactive compounds.  相似文献   

3.
Contacts between small unmyelinated nerve fibres and dermal melanophores of the angelfish, Pterophyllum scalare, exhibit several features characteristic of synapses, including small synaptic vesicles and dense core vesicles, a narrow synaptic cleft, electron-dense material at the postsynaptic membrane (cell membrane of the melanophore) and, occasionally, presynaptic densities. An analysis of serial thin sections shows that the synapses described here represent varicosities of an otherwise more or less straight nerve fibre. A single axon thereby may form several en passant synapses with a single melanophore. It is suggested that the synaptic contacts described here not only represent sites of transmitter release but also play a role as sites of firm attachment between nerves and melanophores which guarantee a stable arrangement of nerve fibres and melanophores.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

5.
The otoplanid nervous system investigated in Otoplana truncaspina Lanfranchi, 1969 and Parotoplanella heterorhabditica Lanfranchi, 1969 consits of: (a) an ellipsoidal cerebral ganglion located between the gut and the cephalic intestine and invested by a fibrillar collagen-like capsule 0.3 μm thick; (b) anterior extracapsular ganglion cell clusters; (c) a peripheral nerve plexus locally thickened at the level of the epithelial sensory and glandular areas, with extensive synaptic connections. At least two neuron types can be identified within the ganglion: (a) an inner layer close to the central neuropile of the 1st type of neurons, showing a vesicular cytoplasm rich in RER and Golgi complexes processing both round, clear, 25–45 nm in diameter, and dense cored vesicles, 50–80 nm in diameter; (b) an outer layer of the 2nd type of neurons, adjoining the capsule and filled with uniformly dense vesicles, 60–90 nm in diameter. Synaptic endings in the neuropile are provided with clear vesicles and dense cored vesicles or uniformly dense vesicles. The presynaptic side has paramembranous projections channelling the vesicles to the active zone; omega-like profiles are also observed. Thin banded muscle fibres run within the brain. A comparison is drawn with the other turbellarian neuron types described in the literature, to suggest their possible function. The functional implications of the synaptic ultrastructure are discussed.  相似文献   

6.
E Fehér  J Vajda 《Acta anatomica》1979,104(3):340-348
The interneuronal synapses of the urinary bladder in the cat were studied by electron microscopy. The great majority of the fibres containing vesicles are found within the ganglia occurring in the trigonum area. Morphologically differentiated synaptic contacts could be observed on the surface of the local neurons and between the different nerve processes. The presynaptic terminals can be divided into three types based on a combination of synaptic vesicles. Type I terminals, presumably cholinergic synaptic terminals, contain only small clear vesicles of 40-50 nm in diameter. Type II terminals, presumably adrenergic terminals, are characterized by small granulated vesicles of 40-60 nm in diameter. Type III terminals, probably of local origin, contain a variable number of large granulated vesicles of 80-140 nm in diameter. Occasionally, a single nerve fibre contacted several (two or four) other nerve processes forming a typical synapse. In other cases, on one nerve cell soma or on other nerve processes there are two or three different-type nerve terminals establishing synapses. It might be inferred from these observations that convergence and divergence can occur in the local ganglia and that cholinergic and adrenergic synaptic terminals can modulate the ganglionic activity. However, a local circuit also can play an important role in coordinating the function of the bladder.  相似文献   

7.
Summary Small nerve terminals in the neuropile of the brain of the crab Scylla serrata make close contact with the secondary, tertiary and higher order central branches of the reflex eye-withdrawal motoneurons. Most contacts have the characteristics of chemically transmitting synapses in that the presynaptic terminals contain agranular vesicles of 25 to 50 nm in diameter and are separated from the motoneuron by a synaptic cleft of about 16 nm. Some terminals contain synaptic ribbons, others contain a mixture of larger (50 to 80 nm) agranular and also dense cored vesicles. In addition large blunt-ended contacts unaccompanied by vesicles, occur between neurons in the neuropile and the motoneuron. It is suggested that the absence of synaptic contacts over the large primary branches of the motoneuron could explain previous physiological findings that little or no resistance changes can be detected in this part of the neuron during excitation or inhibition.We thank Mrs. Joan Goodrum for the preparation of Fig. 1.  相似文献   

8.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

9.
The cytology and synaptic organization of the insular trigeminal—cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

10.
Summary The synaptic contacts made by carp retinal neurons were studied with electron microscopic techniques. Three kinds of contacts are described: (1) a conventional synapse in which an accumulation of agranular vesicles is found on the presynaptic side along with membrane densification of both pre- and postsynaptic elements; (2) a ribbon synapse in which a presynaptic ribbon surrounded by a halo of agranular vesicles faces two postsynaptic elements; and (3) close apposition of plasma membranes without any vesicle accumulation or membrane densification.In the external plexiform layer, conventional synapses between horizontal cells are described. Horizontal cells possess dense-core vesicles about 1,000 Å in diameter. Membranes of adjacent horizontal cells of the same type (external, intermediate or internal) are found closely apposed over broad regions.In the inner plexiform layer ribbon synapses occur only in bipolar cell terminals. The postsynaptic elements opposite the ribbon may be two amacrine processes or one amacrine process and one ganglion cell dendrite. Amacrine processes make conventional synaptic contacts onto bipolar terminals, other amacrine processes, amacrine cell bodies, ganglion cell dendrites and bodies. Amacrine cells possess dense-core vesicles. Ganglion cells are never presynaptic elements. Serial synapses between amacrine processes and reciprocal synapses between amacrine processes and bipolar terminals are described. The inner plexiform layer contains a large number of myelinated fibers which terminate near the layer of amacrine cells.This work was supported by an N.I.H. grant NB 05404-05 and a Fight for Sight grant G-396 to P.W. and N.I.H. grant NB 05336 to J.E.D. The authors wish to thank Mrs. P. Sheppard and Miss B. Hecker for able technical assistance. P.W. is grateful to Dr. G. K. Smelser, Department of Ophthalmology, Columbia University, for the use of his electron microscope facilities.  相似文献   

11.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

12.
Embryonic dentate fascia was grafted into the somatosensory neocortex of adult rats. Nine months post-grafting, the ultrastructural and morphometric analysis of the giant synapses established between the grafted granular neurons and inappropriate targets in the recipient brain was performed. As compared to the intact synaptic endings in the control hippocampus, differences were found in both the number and distribution of large dense-core synaptic vesicles, which store the neuropeptide co-transmitters. The peptidergic vesicle proportion (of total vesicle pool) within the ectopic giant synapses was 5.8 +/- 0.6% (versus 3.3 +/- 0.6% in the control). Clusters of large dense-core vesicles near the active zones of aberrant connections were observed almost 7.9 times more frequently than that of normal contacts. These data provide evidence that neuropeptide transmitters are critical for the maintenance of synaptic connections between the heterotopic dentate grafts and host brain.  相似文献   

13.
Previous studies from many laboratories have failed to demonstrate a significant synaptic input to luteinizing hormone-releasing hormone (LHRH) neurons in the rodent or primate hypothalamus/preoptic area. Having now developed immunocytochemical procedures that result in excellent ultrastructural preservation as well as in retention of antigenicity (Silverman AJ: J Comp Neurol 227:452, 1984), we have reinvestigated the question of the organization of the synaptic arrangements of LHRH neurons in the medial preoptic area of the guinea pig. Afferent inputs to these LHRH neurons include several varieties of axo-somatic and axo-dendritic synapses. Presynaptic terminals contain either round clear vesicles or a mixture of round and flattened vesicles. Most of these terminals, especially when serial sections are examined, contain dense-core granules. Well-defined synaptic clefts are evident and postsynaptic densities can be identified for asymmetrical connections. However, the presence of reaction product in the postsynaptic structure makes it difficult to categorize symmetrical terminals. In addition to these classical inputs, LHRH neurons also enter into complex heterodox synaptic relationships with their neighbors, including somato-dendritic and dendro-dendritic synapses in which the LHRH neuron can be either the pre- or postsynaptic element. These results suggest that complex synaptic relationships might account for the multiple levels of regulation of neurohormone release.  相似文献   

14.
The distribution of synapses and synaptic bouton types in the mesencephalic trigeminal (Me5) nucleus was examined in a quantitative electron-microscopical study. Of 588 terminal boutons that were counted in the compact caudal part of the Me5 nucleus, less than 8% formed synapses on the somata of the predominantly unipolar Me5 neurons. About 79% formed synapses on fibres located between the Me5 somata, while about 13% of the vesicle-containing terminals had no clear synaptic specialization. All of these non-synaptic terminals were G type boutons, with pleomorphic and large characteristic dense-core vesicles. Approximately 60% of the axosomatic synapses were of the S type, containing spherical vesicles and an asymmetrical or symmetrical synaptic specialization. About 20, respectively 15% of the axosomatic synapses, were of the F, respectively P type; both are symmetrical synapse types containing either a majority of flat or pleomorphic vesicles. Less than 10% of the axosomatic synapses were of the G type. Although some proportional differences were noted, an almost similar bouton type distribution pattern was found for the axodendritic synapses suggesting that the axosomatic and axodendritic synapses in the Me5 nucleus are part of the same afferent fibre plexus covering the Me5 nucleus.  相似文献   

15.
The peripheral nervous system and the synapses of G. hermaphroditus are studied with the electron microscope. There is a submuscular as well as a subepithelial plexus. The subepithelial plexus is found among the muscles and between the muscles and the basement membrane. It consists of fibres containing large lucent and lysosome-like vesicles and fibres with only small lucent (synaptic) vesicles. In the deeper lying submuscular plexus also dense and dense-cored vesicles occur in the fibres. Cell bodies are not observed in the plexuses. The separate nerve supplies of the pharynx and the gonads contain nerve cells of the neurosecretory type. Fibres of the same kinds as in the brain are also seen here. The synapses in the neuropile are of two kinds. 1. Symmetrical synapses with an additional presynaptic network are most common. 2. Synapses without thickenings of membranes are observed between lateral membranes of neurites. In the peripheral nervous system are two other kinds of synapses also observed. 1. Asymmertical synapses with a denser and wider postsynaptic thickening and 2. neuromuscular junctions. Neurites containing accumulations of small vesicles against the basement membrane are also described. The organization of the peripheral nervous system is described and discussed in relation to the systematic position of G. hermaphroditus.  相似文献   

16.
In the rabbit pineal gland two types of postganglionic nerve endings were found which are characterized by the presence of small dense-core vesicles or small clear vesicles. Pharmacological and cytochemical experiments showed then to be noradrenergic and cholinergic, respectively. Both types were often present in the same nerve bundle, occasionally in close opposition. Intrapineal neurons were only rarely observed. They showed cholinergic synapses on their perikaryon and dendrites as well as noradrenergic axo-dendritic close contacts. Bilateral extirpation of the superior cervical ganglia revealed the postganglionic sympathetic origin of the pineal noradrenergic nerve fibres. Moreover, it appeared that these ganglia are hardly, if at all, involved in the pathway of pineal cholinergic innervation. The results obtained from lesions of both facial nerves, taken together with the results reported in the literature, led to the conclusion that the postganglionic cholinergic nerve fibers in the pineal are of parasympathetic origin. A model for the sympathetic and parasympathetic pineal innervation is proposed.  相似文献   

17.
Summary According to the internal structure and size of the granules, six types of nerve endings can be distinguished in the toad median eminence: 1. Endings containing mostly dense granules of 600 Å in diameter; 2. Endings containing dense granules of about 800 Å in diameter; 3. Endings which contain dense granules 1,000–2,000 Å in diameter, with the peak at 1,200–1,400 Å; 4. Endings containing granules with a characteristic structure, which differentiate them from the other three types; 5. Scarce endings containing granules 2,000 to 3,800 Å in diameter; and 6. Endings containing only vesicles 400–500 Å in diameter. Types 3 and 4 endings are mainly found in the outer pericapillary zone, and are probably responsible for the strong Gomori-positive reaction observed in this zone. The other four types of endings occur mainly in the inner pericapillary zone, and appear to be Gomori-negative.The probable origins of the different types of endings, and their possible relations with the different releasing factors is discussed.The subendothelial basement membrane has numerous long processes which form a complicated network in contact with all the nerve endings, some nerve fibres and glial cells.Two types of glial cells are described. Pinocytotic vesicles are frequently seen at the points where these cells contact the basement membrane. All the ultrastructural features suggest that these cells are carrying out transport functions.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.The author is very grateful to Professor H. Heller for his continued encouragement and criticism and to Mr. J. Lane and Mr. P. Heap for their valuable help.  相似文献   

18.
Z N Zhuravleva 《Ontogenez》1987,18(6):631-638
Embryonic septum of hippocampus was grafted into the anterior eye chamber (AEC) of adult recipient rats. The fine structure and distribution of synaptic endings were studied in the hippocampus (HC) and septum (ST) grafts developing in oculo for 3-4 months. On the basis of the structure of postsynaptic regions, asymmetrical and symmetrical synapses are distinguished, whose distribution on the body and dendrites of hippocampal and septal neurons is basically similar with that in situ. As in vivo, axo-somatic, axo-dendrite and axo-spine forms of synaptic endings have been observed. Neuropile has, basically, normal structure, judging by the ratio of nerve and glial elements, but sometimes dendro-dendrite contacts and glomerular-like synaptic structures are observed which are not characteristic of the studied brain regions. Besides, the grafts contain an increased number of serial and tangential synapses, as well as axonal terminals with the signs of growth cones. The observed structural deviations appear to be due to incomplete tissue maturation in the absence of normal afferentation.  相似文献   

19.
Within the suprachiasmatic nucleus (SCN) of the rat the fine structure of the synapses and some features of their topological arrangement were studied. Five types of synapses could be distinguished with certainty: A. Two types of Gray-type-I (GTI) or asymmetrical synapses (approximately 33%). The presynaptic elements contain strikingly different types of mitochondria. Size of clear vesicles: approximately 450 A. Synapses with subjunctional bodies often occur, among these also "crest synapses". Localization: dendritic shafts and spines, rarely somata. B. Three types of Gray-type-2 (GTII) or symmetrical synapses (approximately 66%):1) Axo-dendritic and -somatic (=AD) synapses. Size of clear vesicles: approximately 500 A. 2) Invaginated axo-dendritic and -somatic (=IAD) synapses with club-like postsynaptic protrusions within the presynaptic elements (PreE1). Size of clear vesicles is very variable: approximately 400-1,000 A. 3) Dendro-dendritic, -somatic and somato-dendritic (=DD) synapses occurring at least partly in reciprocal arrangements. They represent an intrinsic system. Shape of clear vesicles: often oval; sucrose treatment partly produces flattening. Dense core-vesicles (dcv) are found in all GTII- and most of the GTI-synapses after three-dimensional reconstruction. All types of synapses (mostly GTII-synapses) can be enclosed by multilamellar astroglial formations. The synapses often occur in complex synaptic arrangements. Dendrites and somata of females show significantly more multivesiculated bodies than those of males. Further pecularities of presynaptic (PreELs) and postsynaptic elements (PostELs) within the SCN are described and discussed.  相似文献   

20.
Summary Synaptic junctions are found in all parts of the nucleus, being almost as densely distributed between cell laminae as within these laminae.In addition to the six classical cell laminae, two thin intercalated laminae have been found which lie on each side of lamina 1. These laminae contain small neurons embedded in a zone of small neural processes and many axo-axonal synapses occur there.Three types of axon form synapses in all cell laminae and have been called RLP, RSD and F axons. RLP axons have large terminals which contain loosely packed round synaptic vesicles, RSD axons have small terminals which contain closely packed round vesicles and F axons have terminals intermediate in size containing many flattened vesicles.RLP axons are identified as retinogeniculate fibers. Their terminals are confined to the cell laminae, where they form filamentous contacts upon large dendrites and asymmetrical regular synaptic contacts (with a thin postsynaptic opacity) upon large dendrites and F axons. RSD axons terminate within the cellular laminae and also between them. They form asymmetrical regular synaptic contacts on small dendrites and on F axons. F axons, which also occur throughout the nucleus, form symmetrical regular contacts upon all portions of the geniculate neurons and with other F axons. At axo-axonal junctions the F axon is always postsynaptic.Supported by Grant R 01 NB 06662 from the USPHS and by funds of the Neurological Sciences Group of the Medical Research Council of Canada. Most of the observations were made while R. W. Guillery was a visiting professor in the Department of Physiology at the University of Montreal. We thank the Department of Physiology for their support and Mr. K. Watkins, Mrs. E. Langer and Mrs. B. Yelk for their skillful technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号