首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody-mediated phagocytosis was discovered over a century ago but little is known about antibody effects in phagolysosomes. We explored the consequences of antibody-mediated phagocytosis for two closely related human pathogenic fungal species, Cryptococcus neoformans and Cryptococcus gattii , of which C. neoformans encompasses two varieties: neoformans and grubii. The interaction between C. neoformans varieties grubii and neoformans and host cells has been extensively studied, but that of C. gattii and macrophages remains largely unexplored. Like C. neoformans , antibody-mediated phagocytosis of C. gattii cells was followed by intracellular replication, host cell cytoplasmic polysaccharide accumulation and phagosomal extrusion. Both C. gattii and C. neoformans cells exited macrophages in biofilm-like microcolonies where the yeast cells were aggregated in a polysaccharide matrix that contained bound antibody. In contrast, complement-opsonized C. neoformans variety grubii cells were released from macrophages dispersed as individual cells. Hence, both antibody- and complement-mediated phagocytosis resulted in intracellular replication but the mode of opsonization affected the outcome of exocytosis. The biofilm-like microcolony exit strategy of C. neoformans and C. gattii following antibody opsonization reduced fungal cell dispersion. This finding suggests that antibody agglutination effects persist in the phagosome to entangle nascent daughter cells and this phenomenon may contribute to antibody-mediated protection.  相似文献   

2.
Cryptococcus gattii is a ubiquitous eukaryotic pathogen capable of causing life-threatening infections in a wide variety of hosts, including both immunocompromised and immunocompetent humans. Since infections by C. gattii are predominantly obtained from environmental exposures, understanding environmental populations of this pathogen is critical, especially in countries like India with a large population and with environmental conditions conducive for the growth of C. gattii. In this study, we analysed 109 isolates of C. gattii obtained from hollows of nine tree species from eight geographic locations in India. Multilocus sequence typing was conducted for all isolates using nine gene fragments. All 109 isolates belonged to the VGI group and were mating type α. Population genetic analyses revealed limited evidence of recombination but unambiguous evidence for clonal reproduction and expansion. However, the observed clonal expansion has not obscured the significant genetic differentiation among populations from either different geographic areas or different host tree species. A positive correlation was observed between genetic distance and geographic distance. The results obtained here for environmental populations of C. gattii showed both similarities and differences with those of the closely related Cryptococcus neoformans var. grubii from similar locations and host tree species in India.  相似文献   

3.
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity.  相似文献   

4.
Although abdominal cryptococcomas and visceral cryptococcal lymphadenitis as part of disseminated fungal infection have been reported mostly in HIV-infected patients, localized intra-abdominal involvement due to Cryptococcus gattii has not been previously described in non-HIV-infected patients. In general, a smaller proportion of cryptococcosis is caused by C. gattii. We report here on a type II diabetic HIV-negative patient who presented with a localized intra-abdominal cryptococcal mass due to C. gattii. In addition, we review the general aspects of intra-abdominal and gastrointestinal involvement by Cryptococcus neoformans in the literature and discuss the importance of identifying the C. neoformans varieties and C. gattii in routine laboratories.  相似文献   

5.
Cryptococcus neoformans and Cryptococcus gattii are the caus-ative agents of cryptococcal meningoencephalitis and are amenable to genetic manipulations, making them important models of pathogenic fungi. To improve the efficiency of Agrobacterium tumefaciens mediated transformation (ATMT) in C. neoformans, we optimized various co-cultivation conditions including incubation time and temperature, and bacteria to yeast ratio. ATMT was also applied to both serotypes (B and C) of C. gattii. Transformation efficiency by ATMT in C. neoformans was comparable to either electroporation or biolistic transformation and gave superior efficiencies in serotypes B and C, but unlike Saccharomyces cerevisiae, adenine auxotrophy did not increase ATMT efficiency in C. neoformans or C. gattii. All transformants tested were stable, with a majority containing only a single T-DNA insertion; however, homologous recombination was not observed. Additionally, we isolated adenine auxotrophs containing a single T-DNA insertion in the ADE2 gene for representative serotype B and C strains.  相似文献   

6.
Cryptococcus neoformans and Cryptococcus gattii are pathogenic yeasts causing meningoencephalitis in immunocompromised and immunocompetent hosts. The fungus is typically haploid, and sexual reproduction occurs normally between individuals with opposite mating types, α and a. C. neoformans var. grubii (serotype A) is comprised of molecular types VNI, VNII, and VNB, and C. neoformans var. neoformans (serotype D) contains the molecular type VNIV. Additionally, diploid or aneuploid AD hybrids (VNIII) have been reported. C. gattii contains the molecular types VGI, VGII, VGIII, and VGIV, which encompass both serotypes B and C. To identify possible hybrid strains, URA5-RFLP analysis was performed on 350 globally obtained clinical, environmental, and veterinary isolates. Four clinical isolates from cerebrospinal fluid showed combination patterns of C. neoformans var. grubii and C. gattii: Brazil (n = 2), Colombia (n = 1), and India (n = 1). These strains were monokaryotic and diploid or aneuploid. M13 PCR fingerprinting showed that they contained fragments of both proposed parental groups. Luminex IGS genotyping identified these isolates as hybrids with two different molecular type combinations: three VNI/VGII and one VNI/VGI. Blue color development on CGB agar was delayed in three isolates and absent in one. C. gattii-specific PCR confirmed the presence of C. gattii in the hybrids. CAP59 allele-specific PCR revealed that all the hybrids contained both serotype A and B alleles. Determination of mating-type allelic patterns by PCR revealed that the isolates were αA aB. This is the first study discovering novel natural hybrids between C. neoformans molecular type VNI and C. gattii molecular type VGII.  相似文献   

7.
Jain N  Fries BC 《Mycopathologia》2008,166(4):181-188
Microorganisms that live in fluctuating environments must constantly adapt their behavior to survive. The host constitutes an important microenvironment in opportunistic and primary fungal pathogens like Cryptococcus neoformans (C. neoformans) and Cryptococcus gattii (C. gattii). In clonal populations, adaptation may be achieved through the generation of diversity. For fungi phenotype switching constitutes a mechanism that allows them to change rapidly. Both C. neoformans and C. gattii undergo phenotypic switching, which allows them to be successful pathogens and cause persistent disease. Similar to other encapsulated microbes that exhibit phenotypic variation, phenotypic switching in Cryptococcus changes the polysaccharide capsule. Most importantly, in animal models phenotypic switching affects virulence and can change the outcome of infection. Virulence changes because C. neoformans and C. gattii switch variants elicit different inflammatory responses in the host. This altered host response can also affect the response to antifungal therapy and in some cases may even promote the selection of switch variants. This review highlights the similarity and differences between phenotypic switching in C. neoformans and C. gattii, the two dominant species that cause cryptococcosis in humans.  相似文献   

8.
Cryptococcosis is a life-threatening infection in humans and animals caused by encapsulated yeasts of the genus Cryptococcus. Cryptococcus neoformans and Cryptococcus gattii are the main agents of this mycosis. Until 2002 C. gattii was classified as a variety of C. neoformans but now is accepted as an independent species. The laccase (phenoloxydase) enzyme produced by these yeasts is considered one of the main pathogenic factors for its ability to induce melanin from dihydroxyphenolic compounds. The vast majority of the studies in laccase and melanin synthesis have been developed using isolates of C. neoformans. The main objective of this study was to evaluate laccase activity in strains of C. gattii, serotype B isolated from immunocompetent goats that died of lung and disseminated cryptococcosis, in several outbreaks occurring in Spain. The laccase activities of these isolates were compared with those of other strains of C. gattii and C. neoformans. After fungal cell rupture, the supernatant of each isolate was analyzed for its laccase activity using as substrate an L-dopa 20 mM solution. The degree of enzymatic activity was assessed according to its absorbance at 450 nm and scored using Enzymatic Units (EU). The maximum values were observed in three strains of C. gattii from goats (EU > 12). The smallest values were observed in one environmental isolate of C. gattii serotype C (EU = 0.7). The highest recorded value for C. neoformans was 6.3 EU in a serotype A isolate from one human case of meningitis. C. gattii serotype B obtained from goats showed different degrees of laccase activity, being the highest in those isolated from severe outbreaks of cryptococcosis. This enzyme appears to represent a major, though nonexclusive, pathogenic factor for Cryptococcus gattii.  相似文献   

9.
Cryptococcus gattii is a pathogenic yeast that together with Cryptococcus neoformans causes cryptococcosis in humans and animals. High numbers of viable C. gattii propagules can be obtained from certain species of Australian Eucalyptus camaldulensis trees, and an epidemiological link between Eucalyptus colonization and human exposure has been proposed. However, the highest prevalence of C. gattii cryptococcosis occurs in Papua New Guinea and in regions of Australia where the eucalypt species implicated to date are not endemic. This study investigated the population structure of three geographically distinct clinical and veterinary populations of C. gattii from Australia and Papua New Guinea. All populations that consisted of a genotype found frequently in Australia (VGI) were strongly clonal and were highly differentiated from one another. Two populations of the less common VGII genotype from Sydney and the Northern Territory had population structures inferring recombination. In addition, there was some evidence of reduced genetic differentiation between these geographically remote regions. In a companion study presented in this issue, VGII isolates were overwhelmingly more fertile than those of the VGI genotype, giving biological support to the indirect assessment of sexual exchange. It appears that the VGI genotype propagates clonally on eucalypts in Australia and on an unknown substrate in Papua New Guinea, with infection initiated by an unidentified infectious propagule. VGII isolates are completing their life cycles and may be dispersed via sexually produced basidiospores, which are also likely to initiate respiratory infection.  相似文献   

10.
Urease is an enzyme considered one of the main virulence factors in Cryptococcus neoformans. Quantitative differences in urease production between C. neoformans and the new species Cryptococcus gattii have not been so far documented. Using a standardized method, 25 isolates of C. neoformans and 19 of C. gattii were seeded in Christensen urea broth medium for urease activity detection. Approximately, the 50% of activity of one unit of commercial jack beans urease (A550=0.215) was considered as a reference to classified the Cryptococcus in two cathegories, low (A550<0.215) or high (A550=or>0.215) urease producers. After 72 hours of incubation, 76% of C. neoformans and 15.8% of C. gattii strains were high urease producers (p=0.016). Based on these results, the species C. neoformans appeared as the highest urease producer. Other virulence factors should also be investigated to explain C. gattii pathogenicity.  相似文献   

11.
12.
Cryptococcus neoformans and Cryptococcus gattii are yeasts that cause meningoencephalitis, but that differ in host range and geographical distribution. Cryptococcus neoformans occurs world-wide and mostly infects immunocompromised patients, whereas C. gattii occurs mainly in (sub)tropical regions and infects healthy individuals. Anomalous C. neoformans strains were isolated from patients. These strains were found to be monokaryotic, and diploid or aneuploid. Amplified Fragment Length Polymorphism (AFLP) and sequence analyses indicated that AFLP genotypes 2 (C. neoformans) and 4 (C. gattii) were present. The strains were serologically BD. Mating- and serotype-specific PCR reactions showed that the strains were MATa-serotype D/MATalpha-serotype B. This study is the first to describe naturally occurring hybrids between C. neoformans and C. gattii.  相似文献   

13.
Cryptococcus neoformans and Cryptococcus gattii are closely related pathogenic basidiomycetous yeasts in which six haploid genotypic groups have been distinguished. The two haploid genotypic groups of C. neoformans have been described as variety grubii and variety neoformans. The four C. gattii genotypic groups have, however, not been described as separate taxa. One hundred and seventeen isolates representing all six haploid genotypic groups were selected for multi-locus sequence typing using six loci to investigate if the isolates consistently formed monophyletic lineages. Two monophyletic lineages, corresponding to varieties grubii and neoformans, were consistently present within C. neoformans, supporting the current classification. In addition, four monophyletic lineages corresponding to the previously described genotypic groups were consistently found within C. gattii, indicating that these lineages should be considered different taxa as well.  相似文献   

14.
Disease caused by the pathogenic yeast Cryptococcus gattii begins with the inhalation of an infectious propagule. As C. gattii is heavily encapsulated, this propagule is most likely to be a basidiospore. However, most C. gattii strains are infertile in laboratory crosses, and population studies indicate that recombination and dispersal are very restricted. In addition, strains of the alpha mating type predominate, which would not be expected in a mating population. C. gattii comprises four genetically distinct molecular genotypes, designated VGI to VGIV. C. gattii molecular type VGI has a strong association with Eucalyptus camaldulensis and can be found in high numbers in E. camaldulensis hollows. Previous work on isolates obtained from E. camaldulensis suggested that environmental populations of C. gattii are highly fragmented, have limited ability to disperse, and are confined to individual tree hollows. In the current study, we examined large numbers of isolates from three separate hollows for evidence of recombination. In two hollows, the alpha and a mating types were present in approximately equal numbers. The third hollow had alpha cells only and was from a region where a isolates have never been found. Statistical analysis of multilocus genotypes revealed recombining subpopulations in the three Eucalyptus hollows. Recombination was equally present in the alpha-a and alpha-only populations. This is consistent with recent studies that have found evidence suggestive of alpha-alpha mating in C. gattii and Cryptococcus neoformans and raises the possibility this may be a widespread phenomenon, allowing these fungi to recombine despite a paucity of a mating partners.  相似文献   

15.
Cryptococcus neoformans and Cryptococcus gattii are closely related pathogenic basidiomycetous yeasts in which six haploid genotypic groups have been distinguished. The two haploid genotypic groups of C. neoformans have been described as variety grubii and variety neoformans. The four C. gattii genotypic groups have, however, not been described as separate taxa. One hundred and seventeen isolates representing all six haploid genotypic groups were selected for multi-locus sequence typing using six loci to investigate if the isolates consistently formed monophyletic lineages. Two monophyletic lineages, corresponding to varieties grubii and neoformans, were consistently present within C. neoformans, supporting the current classification. In addition, four monophyletic lineages corresponding to the previously described genotypic groups were consistently found within C. gattii, indicating that these lineages should be considered different taxa as well.  相似文献   

16.
Cryptococcus neoformans is a basidiomycete fungal pathogen of humans that has diverged considerably from other model fungi such as Neurospora crassa, Aspergillus nidulans, Saccharomyces cerevisiae and the common human fungal pathogen Candida albicans. The recent completion of the genome sequences of two related C. neoformans strains and the ongoing genome sequencing of three other divergent Cryptococcus strains with different virulence phenotypes and environmental distributions should improve our understanding of this important pathogen. We discuss the biology of C. neoformans in light of this genomic data, with a special emphasis on the role that evolution and sexual reproduction have in the complex relationships of the fungus with the environment and the host.  相似文献   

17.
Gene duplication and divergence via both the loss and gain of gene activities are powerful evolutionary forces underlying the origin of new biological functions. Here a comparative genetics approach was applied to examine the roles of protein kinase A (PKA) catalytic subunits in three closely related varieties or sibling species of the pathogenic fungus genus Cryptococcus. Previous studies revealed that two PKA catalytic subunits, Pka1 and Pka2, control virulence factor production and mating. However, only one of the two plays the predominant physiological role, and this function has been exchanged between Pka1 and Pka2 in strains of the Cryptococcus neoformans var. grubii serotype A lineage compared to divergent C. neoformans var. neoformans serotype D isolates. To understand the basis for this functional plasticity, here the activities of Pka1 and Pka2 were defined in the two varieties and the related sibling species Cryptococcus gattii by gene disruption and characterization, heterologous complementation, and analysis of serotype AD hybrid mutant strains. The findings provide evidence for a shared ancestral role of PKA in governing mating and virulence factor production and indicate that the exchange of catalytic subunit roles is attributable to loss of function. Our studies illustrate the plasticity of signaling networks enabling rapid rewiring during speciation of a clade of common human fungal pathogens.  相似文献   

18.
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.  相似文献   

19.
Sex serves a pivotal role in genetic exchange and it contributes to the fitness and genetic diversity for eukaryotic populations. Although the importance of the canonical bisexual mating has been widely accepted, the significance of the evolution and maintenance of unisexual mating observed in some eukaryotes is unclear. The recent discovery of same-sex mating in the human fungal pathogen Cryptococcus neoformans and the revelation of its impact on the Cryptococcus global population structure provide a platform to elucidate the molecular mechanisms and significance of unisexual mating. Here, we review the evidence of unisexual mating in Cryptococcus and provide some perspective on the biological significance of this life style on the survival of this important fungal pathogen in the environment and in animal hosts. We also summarize our current understanding of the molecular mechanisms governing this unconventional mode of reproduction.  相似文献   

20.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号