首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Females of the marbled salamander, Ambystoma opacum, store sperm in exocrine glands called spermathecae in the roof of the cloaca. Eggs are fertilized by sperm released from the spermathecae during oviposition. Some sperm remain in the spermathecae following oviposition, but these sperm degenerate within a month and none persists more than 6 mo after oviposition. Thus, sperm storage between successive breeding seasons does not occur. Apical secretory vaculoes are abundant during the fall mating season and contain a substance that is alcian blue+ at pH 2.5. Production of secretory vacuoles decreases markedly after oviposition, and the glands are inactive by the summer months. Ambystoma opacum is a terrestrial breeder, and some mating occurs prior to arrival at pond basins where oviposition occurs. Mating prior to arrival at the ovipository site may prolong the breeding season, leading to fitness implications for both males and females. Females have opportunities for more matings, and the possibilities for sperm competition in the spermathecae are enhanced. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The spermathecae of female Salamandrina terdigitata were observed using light and transmission electron microscopy during the fallspring period of sperm storage and secretory activity and during the summer stasis. When sperm are stored inside the spermathecae, the product synthesized by spermathecal epithelial cells is exported into the lumen, where it bathes the sperm. During sperm storage some spermatozoa undergo degradation by the spermathecal epithelium. This process, which includes sperm capture by the apical microvilli, formation of endocytic vacuoles and production of lysosomes, becomes prominent shortly after oviposition. In many instances, cells filled with vacuolized spermatozoa and/or residual bodies undergo desquamation from the spermathecal epithelium and enter the lumen together with residual sperm. Desquamated cells, together with residual sperm, are a common feature in the spermathecal lumina at the end of the egg-laying season. Concomitant to the activity of the spermathecal epithelium, macrophages move into the spermathecae from the stroma and contribute to the degradation of both the residual sperm and desquamated epithelial cells. As a result of this degradation activity, spermathecae observed during the short summer stasis appear devoid of secretory product and sperm. By late summer, however, the spermathecae already show early signs of an imminent resumption of biosynthetic activity. © 1995 Wiley-Liss, Inc.  相似文献   

3.
In northern Indiana, the mating season of Plethodon cinereus occurs after hibernation from March until June, when oviposition begins. During the mating season, a female stores sperm in its spermatheca, a compound tubular gland in the roof of the cloaca. The apical cytoplasm of the spermathecal epithelium is filled with large secretory vacuoles whose product is released while sperm are stored. Females induced to oviposit in June and July by injections of human chorionic gonadotropin (hCG) still retain much sperm 1 month after oviposition, but secretory vacuoles are absent in all specimens sacrificed in July and August. Instead, some sperm are embedded in the spermathecal epithelium with resultant spermiophagy involving lysosomes. A female sacrificed in September 2 months after oviposition possesses scant sperm, but spermiophagy alone does not seem extensive enough to account for the decrease in sperm numbers. Females sacrificed in October prior to hibernation lack sperm in their spermathecae; some secretory vacuoles are present, but they are not as numerous or as enlarged as in specimens collected in March and May. Inter- and intrafamilial differences in the cytology of sperm storage may not be phyletically informative at the family level but related to species-specific reproductive adaptations. J. Morphol. 234:131–146, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Spermathecae are exocrine glands in the roof of the female cloaca that store sperm. Cytological and histochemical data indicate that the one type of secretion into the lumen is a glycoprotein. After a period of stasis in the summer, production of the secretion is initiated in the fall, coincident with an increase in ovarian follicular size. By the time of maximal follicular development and most intense mating activity in March and April, the spermathecal epithelium is filled with secretory granules. The secretory material is released into the lumen, enveloping the sperm. Many sperm remain in the spermathecae after oviposition, and most of these sperm are degraded in the spermathecal epithelium or pass through interruptions in the spermathecal walls caused by desquamation. Sperm in contact with the stromal environment are phagocytized by leukocytes. Some sperm, however, may survive in the lumen until at least the following fall. These sperm retain normal cytology, but whether or not they remain fertile and intact until a subsequent ovipository cycle is unknown.  相似文献   

5.
Female sperm storage was studied in a population of Notophthalmus viridescens from South Carolina. Spermathecae initiate production of a glycoprotein secretory product in October. At this time ovarian follicles are immature (0.5–0.9 mm dia), and mating does not occur despite spermiation in males. Six of the 10 females collected in December had sperm in their spermathecae, indicating onset of mating. Unmated females collected in October and sacrificed in February and March possessed mature ovarian follicles (1.3–1.4 mm dia), and the spermathecae contained large secretory vacuoles 2–3 μm dia. Release of secretory product is concomitant with the appearance of sperm in the spermathecae. Thus mated females lack secretory vacuoles in the spermathecal epithelium, and additional synthesis of secretory product does not occur. All females collected in February and March have mated. Sperm are embedded in the spermathecal epithelium and are undergoing degradation in February. Degradation of sperm in the lumen and epithelium is evident in specimens examined from May and June. Atresia of ovarian follicles begins in April in captive specimens, and specimens captured from the bay in May are spent. A general postbreeding emigration from the pond occurs in summer. Fourteen females collected 7 March were injected with human chorionic gonadotropin (hCG) on 9 March and laid fertile eggs 10–18 March. Two of these females were sacrificed each month from April-September; all retained some sperm in their spermathecae, but further oviposition did not occur. Four females were kept 1 year after oviposition of fertile eggs, and oviposition again was induced with hCG; these eggs were infertile, and spermathecae lacked sperm. Spermathecae are inactive from June-September in captive and wild-caught specimens. Sperm may be stored effectively up to 6 months (December-May), and no evidence was found for retention of viable sperm from one breeding season to the next. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Sperm storage glands, spermathecae, were examined from mated female Ambystoma opacum during the breeding season. No differences occur in the spermathecal ultrastructure of individuals sacrificed prior to oviposition and those sacrificed within 3 days of removal from tended clutches of recently oviposited eggs. The simple tubuloalveolar glands produce two types of secretory vacuoles. Apical secretory vacuoles contain glycosaminoglycans for export into the lumen to bathe stored sperm, perhaps providing the chemical/osmotic environment necessary for sperm quiescence. The other type of secretory vacuole contains an unsaturated lipid that is produced for export into the connective tissue surrounding the spermathecae. The role of this secretion may involve the contraction of myoepithelial cells, resulting in sperm expulsion. Some sperm undergo degradation in the spermathecal epithelium, and an interepithelial leukocyte was observed in one specimen. Apical secretory vacuoles and sperm are absent from the spermathecae of a specimen sacrificed 62 days after removal from a tended egg clutch. This is the first report on the spermathecal cytology of a salamander from the Ambystomatidae, and comparisons with salamanders from other families provide a morphological basis for considering spermathecae polyphyletic within the Caudata. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The spermathecae of ten female Amphiuma tridactylum were examined by light and electron microscopy during the presumed mating and ovipository seasons (March–August) in Louisiana. Spermathecae were simple tubuloalveolar glands in the dorsal wall of the cloaca. Six of the ten specimens were vitellogenic, and all of these specimens contained sperm in their spermathecae and had secretory activity in the spermathecal epithelium. Two nonvitellogenic females also had sperm in their spermathecae and active epithelial cells, whereas the other nonvitellogenic females lacked stored sperm and secretory activity in the spermathecae. In specimens storing sperm from March–May, the sperm were normal in cytology, and secretory vacuoles were contained within the epithelium. In the August sample, however, evidence of sperm degradation was present, and secretory material had been released into the lumen by an apocrine process. We therefore hypothesize that the spermathecal secretions function in sperm degeneration. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The spermatheca of Plethodon cinereus is a compound tubular gland that stores sperm from mating in early spring (March–April) to oviposition in summer (June–July). The seasonal variation of sperm storage in this species has previously been studied by light and transmission electron microscopy. In this paper, sperm aggregations, interaction of sperm with the spermathecal epithelium, and spermathecal secretions are studied using scanning electron microscopy. Within spermathecal tubules, relatively small groups of sperm are aligned along their entire lengths in parallel arrays. This pattern is similar to other plethdontids with complex spermathecae. Lumina of spermathecal tubules are filled with secretory material in April prior to the arrival of sperm, and after sperm appear, a coating of secretory material persists on the apices of the spermathecal epithelium. Sperm peripheral to the central luminal mass can become embedded in the secretory matrix or pushed deeper into the spermathecal epithelium. The spermathecal secretions may serve to attract and prolong the viability of sperm, but sperm that become enmeshed in the secretions or epithelium are phagocytized. Sperm and spermathecal secretions are largely absent after ovulation and in summer months, and new secretory vacuoles are formed in fall, although mating does not occur until spring.  相似文献   

9.
Abstract.  Female animals that use sperm from a single mating to fertilize eggs over an extended period require efficient mechanisms for sperm storage and use. There have been few studies of these mechanisms in tephritid flies. Mating, copula duration, sperm storage and sperm usage patterns are assessed in an Australian tephritid, the Queensland fruit fly ( Bactrocera tryoni ; a.k.a. 'Q-fly'). In particular, the present study investigates whether each of these aspects of mating varies in relation to female size or male size, whether sperm storage patterns change over time after mating (1, 5, 10 and 15 days), and the relative roles of the ventral receptacle and the two spermathecae as sperm storage organs. Large females are more likely to mate than are small females, and are also more fecund in the first 5 days after mating. Females are more likely to store some sperm and, among those that store some sperm, store more sperm if their mate is large. Most sperm are stored in the spermathecae (median = 97%), often with high levels of asymmetry between the two spermathecae. Asymmetry of sperm storage is related to number of sperm stored, but not to male or female size. Total number of stored sperm declines over the 15 days after mating, but this decrease in sperm numbers only reflects changes in the spermathecae; numbers of sperm in the ventral receptacle remain unchanged over this period. As a consequence, the proportion of total sperm stored in the spermathecae declines relative to the ventral receptacle. These results are consistent with a system in which small numbers of sperm are maintained in the ventral receptacle for fertilizations, and are replenished by sperm from the spermathecae as required. Sperm distribution and usage patterns in Q-flies are comparable with recent findings in medflies, Ceratitis capitata , but differ markedly from patterns found in several Anastrepha species.  相似文献   

10.
This study is the first report on the ultrastructure of the sperm storage glands (spermathecae) in the salamander Rhyacotriton variegatus. The population studied is associated with cold-water, rocky streams of the redwood (Sequoia) zone in northern California. Males possess sperm in their vasa deferentia and undergo spermiation throughout the year, but mating is seasonal. Most females with large, vitellogenic follicles (2.0-3.9 mm mean dia.) collected from February-June contain sperm in their spermathecae, although some females with large follicles lack sperm. Other mature-size females collected during this period have small ovarian follicles (0.9-1.2 mm mean dia.) and lack stored sperm. All females collected from September-November have small follicles (0.6-1.6 mm mean dia.) and lack sperm, except in one instance in which a female collected in November had a small amount of degraded sperm, apparently retained from the previous breeding season. The spermathecae consist of simple tubulo-alveolar glands in which the neck tubules produce a mucoid secretory product, and the distal bulbs, where sperm are stored, contain secretory vacuoles of uniform density that stain positively for glycosaminoglycans. In specimens containing sperm, some bulbs have abundant sperm and others lack sperm, but the ultrastructure is similar in both conditions. The acini contain columnar epithelial cells with wide intercellular canaliculi, and a merocrine process releases the secretion. Spermiophagy occurs. In specimens from spring and summer with small ovarian follicles, the neck tubules are similar to those of breeding females, but the distal bulbs are reduced to cords of cells lacking a discernible lumen. Secretory activity in the distal bulbs is initiated in the fall. Spermathecae of R. variegatus are most similar to those of a stream-dwelling plethodontid, Eurycea cirrigera.  相似文献   

11.
In the fly Dryomyza anilis females have two kinds of sperm storage organs: one bursa copulatrix and three spermathecae (two spermathecae with a common duct form the doublet, and the third is a singlet spermathecal unit). At the beginning of a mating the male deposits his sperm in the bursa copulatrix. After sperm transfer the male taps the female''s abdomen with his claspers. This behaviour has been shown to increase the male''s fertilization success. After mating, the female discharges large quantities of sperm before oviposition. To find out where the sperm remaining in the female are stored, I counted the number of sperm in the droplet and in the female''s sperm storage organs after different types of mating. I carried out three mating experiments. In experiment 1, virgin females were mated with one male and the matings were interrupted either immediately after sperm transfer or after several tapping sequences. The results show that during male tapping more sperm moved into the singlet spermatheca. In addition, the total number of sperm correlated with sperm numbers in all sperm storage organs, and male size was positively related to the number of sperm remaining in the bursa. In experiment 2, females mated with several males. The number of sperm increased with increasing number of matings only in the doublet spermatheca. No increase in the number of sperm in the singlet spermatheca during consecutive matings suggests that sperm were replaced or did not reach this sperm storage organ. In experiment 3, virgin females were mated with a single male and half of them were allowed to lay eggs. The experiment showed that during egglaying, females primarily used sperm from their singlet spermatheca. The results from the three experiments suggest that sperm stored in the singlet spermatheca is central for male fertilization success and male tapping is related to sperm storage in the singlet spermatheca. The different female''s sperm storage organs in D. anilis may have separate functions during sperm storage as well as during sperm usage.  相似文献   

12.
黄胫小车蝗受精囊内含物研究   总被引:2,自引:0,他引:2  
用组织化学、亲和组织化学方法研究了黄胫小车蝗 Oedaleus infernalis Saussure交配前后受精囊内含物的化学组成。结果表明,黄胫小车蝗受精囊内含物有蛋白质、脂类和碳水化合物。交配前后黄胫小车蝗受精囊腔及腺细胞中蛋白质、碳水化合物的含量有较大差异,交配后的含量明显高于交配前的,说明交配活动启动了受精囊腺细胞的分泌,使受精囊腔及受精囊管中积聚大量的碳水化合物及蛋白质。交配前后受精囊脂类含量没有明显变化。用亲和组织化学方法对交配后受精囊进行染色分析,表明受精囊腔内含物的碳水化合物、蛋白质主要以糖蛋白形式存在,糖残基主要有半乳糖、甘露糖及α-葡萄糖。  相似文献   

13.
Female insects generally store sperm received during mating in specific organs of their reproductive tract, i.e., the spermathecae, which keep the sperm alive for a long time until fertilization occurs. We investigated spermatheca morphology and ultrastructure in the psylloidean insect Trioza alacris (Flor, 1861 ) in which spheroidal sperm packets that we refer to as ‘spermatodoses’ are found after mating. The ectoderm‐derived epithelium of the sac‐shaped spermatheca that has a proximal neck, consists of large secretory and flat cuticle‐forming cells. Secretory cells are characterized by a wide extracellular cavity, bordered by microvilli, in which electron‐dense secretion accumulates before discharge into the spermathecal lumen. The cuticle‐forming cells produce the cuticular intima of the organ and a peculiar specialized apical structure, through which secretion flows into the lumen. At mating, the male transfers bundles of sperm cells embedded in seminal fluid into the spermathecal neck. Sperm cells proceed towards the spermathecal sac lumen, where they are progressively compacted and surrounded with an envelope that also encloses secretions of both male and female origin. We describe the formation of these sperm containing structures and document the contribution of the female secretion to spermatodose or female‐determined spermatophore construction. We also discuss the choice of the term ‘spermatodose’ for T. alacris and suggest it be used to refer to sperm masses constructed in the female reproductive organs, at least when they involve the contribution of female secretion. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
At mating, female insects generally receive and store sperm in specific organs of their reproductive tract called spermathecae. Some Heteroptera, such as Cimicomorpha, lack a true spermatheca; some have receptacles of novel formation where sperm cells can transit or be stored. In Tingidae, there are two sac‐like diverticula, the “pseudospermathecae,” each at the base of a lateral oviduct, which previously were considered to function as spermathecae. However, this role has never been documented, either by ultrastructural studies or by observations of sperm transit in the female reproductive tract. In this article, we investigate the morphology and the ultrastructure of the female reproductive apparatus in the economically important tingid species Stephanitis pyrioides, focusing our attention on the functional role of the pseudospermathecae in an evolutionary perspective. Each ovary consists of seven telotrophic meroistic ovarioles, the long pedicels of which enlarge into a bulb‐like structure near the terminal oocyte. The ovarioles flow into two long lateral oviducts, which join to form a very short common oviduct. Basally, each lateral oviduct is connected through a short duct to one of two pseudospermathecae. The ultrastructure of the ectodermal epithelium of the pseudospermathecae is dramatically different in sexually immature or mated females. In virgin females, cells delimit a very irregular lumen, filled with a moderately electron‐dense granular material. The large nucleus adapts to their irregular shape, which can have long projections in some regions and be flattened in others. After mating, epithelial cells generally elongate and display an apical layer of microvilli extending beneath the cuticle, often containing mitochondria. In the lumen of the pseudospermathecae there is a dense brownish secretion. No sperm cells were ever found inside this organ. After mating, sperm move upward along the lateral oviducts and the ovarioles, accumulating in the bulb‐like structure of the pedicels, and proceeding into the distal region between the follicle cells surrounding the oocyte and the ovariole wall. The egg, most likely fertilized in the bulb‐like region of the ovariole, moves through the lateral oviduct, entirely enters the pseudospermatheca and is smeared with its secretion just before oviposition. We exclude a function of sperm storage for the pseudospermathecae, and instead suggest a novel role for these organs as reproductive accessory glands. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Sperm storage in cloacal spermathecae was studied in females of Triturus v. vulgaris from southern England killed at the end of the breeding season in June. This species mates and oviposits eggs in ponds from March to June. Included in the sample were 12 unmated females collected in terrestrial situations in March and mated in the laboratory. Some of these females oviposited viable eggs in the laboratory whereas others did not oviposit after mating. In addition, we examined five females with unknown mating histories that were collected from a breeding pond in June. We found that all of the specimens contained some stored sperm and were similar in spermathecal ultrastructure. The spermathecae exhibited characteristics of secretory epithelium at the end of a cycle, including irregular heterochromatic nuclei surrounded by scant cytoplasm, absence of organelles involved in synthetic activities, few secretory vacuoles, and wide intercellular canaliculi. Spermiophagy by the spermathecal epithelium was extensive. In contrast, spermathecae from females at the beginning of the breeding season as reported in our previous study were actively producing a PAS+ secretion and did not exhibit spermiophagy. Spermiophagy is a means of eliminating sperm prior to the next breeding season.  相似文献   

16.
Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females ‘hold on’ to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.  相似文献   

17.
Females of the viviparous cockroach Diploptera punctata store sperm from their first mating, and do not remate until after giving birth to their first batch of young. The irradiated male technique was used to determine the outcome of sperm competition in the second batch of eggs of females mated sequentially to normal and irradiated males. It is estimated that the second male to mate with a female fertilizes approximately two thirds of the eggs in a female's second batch of eggs. Direct evidence for sperm mixing was obtained. Undeveloped eggs (fertilized by irradiated sperm) and developing embryos (fertilized by normal sperm) were found interspersed throughout oothecae that were extruded from females, demonstrating that normal and irradiated sperm were released from the spermathecae at oviposition and that they competed for fertilizations.  相似文献   

18.
Parafabricia ventricingulata females have a pair of spermathecae located in the radiolar crown anterio-dorsal to the buccal opening. The spermathecae have three regions; an entrance, 7 μm across, leading into a ciliated ‘atrium’ that is approximately 50 μm long; a connecting piece, 2–5 μm across and 25 μm long, leading from the ‘atrium’ to the sperm receptacle. The sperm receptacle is heavily pigmented and spherical. The sperm lie in a large mass in the receptacle with no particular orientation. Oriopsis bicoloris females have a pair of unpigmented spermathecae in the collar behind the radiolar crown. Each spermatheca is a simple blind duct 100 μm long, with a lumen 8 μm in diameter. Between 30 and 40 sperm lie in the lumen of each spermatheca. Oriopsis brevicollaris females have a pair of spermathecae located in the radiolar crown above the buccal opening. From the opening, 10 μm across, a blind duct runs for 90 μm. Sperm are stored in the distal region of the duct. Sperm lie along the margins of the duct in close contact with microvilli. Up to 10 sperm were found in each spermatheca. Oriopsis mobilis females have a pair of spermathecae located in the radiolar crown above the buccal opening. The opening, 3 μm across, leads into a blind duct that runs for 30 μm. Sperm are stored in the distal region of the spermathecae where they are embedded in spermathecal cells. Between 10 and 20 sperm were found in each spermatheca. Oriopsis dentata was found not to have spermathecae. The homologies of the spermathecae found within the Sabellinae and Fabriciinae (Sabellidae) and the Spirorbinae (Serpulidae) are discussed, but cannot be resolved on present evidence.  相似文献   

19.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

20.
昆虫受精囊的结构与功能   总被引:2,自引:0,他引:2  
何建平  奚耕思 《昆虫知识》2003,40(5):476-479
昆虫受精囊是在雌雄交配之后,作为雌性贮存、释放精子和使卵受精的器官,其结构、功能及活动调节对保持精子活性和卵子受精有重要的影响。该文对昆虫受精囊结构、功能及其活动调节的研究进展做一介绍,以期为相关研究提供有益的资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号